This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqsplit.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqsplit.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| seqsplit.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | ||
| seqsplit.4 | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ) | ||
| seqsplit.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | ||
| Assertion | seqsplit | ⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqsplit.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqsplit.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 3 | seqsplit.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 4 | seqsplit.4 | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 5 | seqsplit.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | |
| 6 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 8 | eleq1 | ⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) | |
| 9 | fveq2 | ⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 13 | 8 12 | imbi12d | ⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) ) ) ) |
| 15 | eleq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) | |
| 16 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) ) | |
| 17 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑥 = 𝑛 → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 20 | 15 19 | imbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) ) ) |
| 22 | eleq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) | |
| 23 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 24 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 25 | 24 | oveq2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 26 | 23 25 | eqeq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 27 | 22 26 | imbi12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 28 | 27 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) ) |
| 29 | eleq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) | |
| 30 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) ) | |
| 31 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) | |
| 32 | 31 | oveq2d | ⊢ ( 𝑥 = 𝑁 → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 33 | 30 32 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 34 | 29 33 | imbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
| 35 | 34 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) ) |
| 36 | seqp1 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) | |
| 37 | 4 36 | syl | ⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
| 38 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝑀 + 1 ) ∈ ℤ ) | |
| 39 | seq1 | ⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) | |
| 40 | 3 38 39 | 3syl | ⊢ ( 𝜑 → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) |
| 41 | 40 | oveq2d | ⊢ ( 𝜑 → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
| 42 | 37 41 | eqtr4d | ⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) |
| 43 | 42 | a1i13 | ⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 44 | peano2fzr | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) | |
| 45 | 44 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 46 | 45 | expr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 47 | 46 | imim1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
| 48 | oveq1 | ⊢ ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 49 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 50 | peano2uz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 51 | 4 50 | syl | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 53 | uztrn | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 54 | 49 52 53 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 55 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 56 | 54 55 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 57 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 58 | 49 57 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 59 | 58 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 60 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝜑 ) | |
| 61 | eluzelz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑀 ∈ ℤ ) | |
| 62 | 4 61 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 63 | peano2uzr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 64 | 62 3 63 | syl2anc | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 65 | fzss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ... 𝑀 ) ⊆ ( 𝐾 ... 𝑁 ) ) | |
| 66 | 64 65 | syl | ⊢ ( 𝜑 → ( 𝐾 ... 𝑀 ) ⊆ ( 𝐾 ... 𝑁 ) ) |
| 67 | 66 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑀 ) ) → 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) |
| 68 | 67 5 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑀 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 69 | 4 68 1 | seqcl | ⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝑆 ) |
| 70 | 69 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝑆 ) |
| 71 | elfzuz3 | ⊢ ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 72 | fzss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ( 𝑀 + 1 ) ... 𝑛 ) ⊆ ( ( 𝑀 + 1 ) ... 𝑁 ) ) | |
| 73 | 45 71 72 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( 𝑀 + 1 ) ... 𝑛 ) ⊆ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 74 | fzss1 | ⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝐾 ... 𝑁 ) ) | |
| 75 | 4 50 74 | 3syl | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝐾 ... 𝑁 ) ) |
| 76 | 75 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝐾 ... 𝑁 ) ) |
| 77 | 73 76 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( 𝑀 + 1 ) ... 𝑛 ) ⊆ ( 𝐾 ... 𝑁 ) ) |
| 78 | 77 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑛 ) ) → 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) |
| 79 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 80 | 78 79 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 81 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 82 | 49 80 81 | seqcl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ) |
| 83 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 84 | 83 | eleq1d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) |
| 85 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 86 | 85 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ∀ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 87 | simpr | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) | |
| 88 | ssel2 | ⊢ ( ( ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝐾 ... 𝑁 ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) | |
| 89 | 75 87 88 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) |
| 90 | 84 86 89 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 91 | 2 | caovassg | ⊢ ( ( 𝜑 ∧ ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝑆 ∧ ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) → ( ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 92 | 60 70 82 90 91 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 93 | 59 92 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 94 | 56 93 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 95 | 48 94 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 96 | 47 95 | animpimp2impd | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( ( 𝜑 → ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) ) |
| 97 | 14 21 28 35 43 96 | uzind4 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
| 98 | 3 97 | mpcom | ⊢ ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 99 | 7 98 | mpd | ⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |