This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 26-Feb-2014) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqf1o.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqf1o.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | ||
| seqf1o.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| seqf1o.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqf1o.5 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) | ||
| seqf1olem.5 | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | ||
| seqf1olem.6 | ⊢ ( 𝜑 → 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) | ||
| seqf1olem.7 | ⊢ 𝐽 = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) | ||
| seqf1olem.8 | ⊢ 𝐾 = ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) | ||
| Assertion | seqf1olem1 | ⊢ ( 𝜑 → 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf1o.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqf1o.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | |
| 3 | seqf1o.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 4 | seqf1o.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | seqf1o.5 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) | |
| 6 | seqf1olem.5 | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 7 | seqf1olem.6 | ⊢ ( 𝜑 → 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) | |
| 8 | seqf1olem.7 | ⊢ 𝐽 = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) | |
| 9 | seqf1olem.8 | ⊢ 𝐾 = ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) | |
| 10 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ∈ V ) | |
| 11 | fvex | ⊢ ( ◡ 𝐹 ‘ 𝑥 ) ∈ V | |
| 12 | ovex | ⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ∈ V | |
| 13 | 11 12 | ifex | ⊢ if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ∈ V |
| 14 | 13 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ∈ V ) |
| 15 | iftrue | ⊢ ( 𝑘 < 𝐾 → if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) = 𝑘 ) | |
| 16 | 15 | fveq2d | ⊢ ( 𝑘 < 𝐾 → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 17 | 16 | eqeq2d | ⊢ ( 𝑘 < 𝐾 → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ↔ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 | 17 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ↔ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) |
| 19 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑥 = ( 𝐹 ‘ 𝑘 ) ) | |
| 20 | elfzelz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ℤ ) | |
| 21 | 20 | zred | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ℝ ) |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 ∈ ℝ ) |
| 23 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 < 𝐾 ) | |
| 24 | 22 23 | gtned | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝐾 ≠ 𝑘 ) |
| 25 | f1of | ⊢ ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 26 | 6 25 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 28 | fzssp1 | ⊢ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) | |
| 29 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 30 | 28 29 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 31 | 27 30 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 32 | elfzp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) ) ) ) | |
| 33 | 4 32 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) ) ) ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) ) ) ) |
| 35 | 31 34 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) ) ) |
| 36 | 35 | ord | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ¬ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) ) ) |
| 37 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 38 | f1ocnvfv | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑘 ) ) | |
| 39 | 37 30 38 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑘 ) ) |
| 40 | 9 | eqeq1i | ⊢ ( 𝐾 = 𝑘 ↔ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑘 ) |
| 41 | 39 40 | imbitrrdi | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) → 𝐾 = 𝑘 ) ) |
| 42 | 36 41 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ¬ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) → 𝐾 = 𝑘 ) ) |
| 43 | 42 | necon1ad | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐾 ≠ 𝑘 → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 44 | 24 43 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 45 | 19 44 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 46 | 19 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑥 ) |
| 47 | f1ocnvfv | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑥 → ( ◡ 𝐹 ‘ 𝑥 ) = 𝑘 ) ) | |
| 48 | 37 30 47 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑥 → ( ◡ 𝐹 ‘ 𝑥 ) = 𝑘 ) ) |
| 49 | 46 48 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) = 𝑘 ) |
| 50 | 49 23 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) |
| 51 | iftrue | ⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 → if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 53 | 52 49 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) |
| 54 | 45 53 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) |
| 55 | 54 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 56 | 18 55 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 57 | iffalse | ⊢ ( ¬ 𝑘 < 𝐾 → if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) = ( 𝑘 + 1 ) ) | |
| 58 | 57 | fveq2d | ⊢ ( ¬ 𝑘 < 𝐾 → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 59 | 58 | eqeq2d | ⊢ ( ¬ 𝑘 < 𝐾 → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ↔ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 60 | 59 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ↔ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 61 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 62 | f1ocnv | ⊢ ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 63 | 6 62 | syl | ⊢ ( 𝜑 → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 64 | f1of1 | ⊢ ( ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 65 | 63 64 | syl | ⊢ ( 𝜑 → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 66 | f1f | ⊢ ( ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1→ ( 𝑀 ... ( 𝑁 + 1 ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 67 | 65 66 | syl | ⊢ ( 𝜑 → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 68 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 69 | 4 68 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 70 | eluzfz2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 71 | 69 70 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 72 | 67 71 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 73 | 9 72 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 74 | 73 | elfzelzd | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 75 | 74 | zred | ⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 76 | 75 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐾 ∈ ℝ ) |
| 77 | 21 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 ∈ ℝ ) |
| 78 | peano2re | ⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) | |
| 79 | 77 78 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 80 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ¬ 𝑘 < 𝐾 ) | |
| 81 | 76 77 80 | nltled | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐾 ≤ 𝑘 ) |
| 82 | 77 | ltp1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 < ( 𝑘 + 1 ) ) |
| 83 | 76 77 79 81 82 | lelttrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐾 < ( 𝑘 + 1 ) ) |
| 84 | 76 83 | ltned | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐾 ≠ ( 𝑘 + 1 ) ) |
| 85 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 86 | fzp1elp1 | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 87 | 86 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 88 | 85 87 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 89 | elfzp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) ) ) ) | |
| 90 | 4 89 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) ) ) ) |
| 91 | 90 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) ) ) ) |
| 92 | 88 91 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) ) ) |
| 93 | 92 | ord | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ¬ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) ) ) |
| 94 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 95 | f1ocnvfv | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( 𝑘 + 1 ) ) ) | |
| 96 | 94 87 95 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( 𝑘 + 1 ) ) ) |
| 97 | 9 | eqeq1i | ⊢ ( 𝐾 = ( 𝑘 + 1 ) ↔ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( 𝑘 + 1 ) ) |
| 98 | 96 97 | imbitrrdi | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) → 𝐾 = ( 𝑘 + 1 ) ) ) |
| 99 | 93 98 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ¬ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) → 𝐾 = ( 𝑘 + 1 ) ) ) |
| 100 | 99 | necon1ad | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝐾 ≠ ( 𝑘 + 1 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 101 | 84 100 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 102 | 61 101 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 103 | 61 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 𝑥 ) |
| 104 | f1ocnvfv | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 𝑥 → ( ◡ 𝐹 ‘ 𝑥 ) = ( 𝑘 + 1 ) ) ) | |
| 105 | 94 87 104 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 𝑥 → ( ◡ 𝐹 ‘ 𝑥 ) = ( 𝑘 + 1 ) ) ) |
| 106 | 103 105 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( 𝑘 + 1 ) ) |
| 107 | 106 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ↔ ( 𝑘 + 1 ) < 𝐾 ) ) |
| 108 | lttr | ⊢ ( ( 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝑘 < ( 𝑘 + 1 ) ∧ ( 𝑘 + 1 ) < 𝐾 ) → 𝑘 < 𝐾 ) ) | |
| 109 | 77 79 76 108 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑘 < ( 𝑘 + 1 ) ∧ ( 𝑘 + 1 ) < 𝐾 ) → 𝑘 < 𝐾 ) ) |
| 110 | 82 109 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑘 + 1 ) < 𝐾 → 𝑘 < 𝐾 ) ) |
| 111 | 107 110 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 → 𝑘 < 𝐾 ) ) |
| 112 | 80 111 | mtod | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) |
| 113 | iffalse | ⊢ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 → if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) | |
| 114 | 112 113 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) |
| 115 | 106 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) |
| 116 | 77 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 ∈ ℂ ) |
| 117 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 118 | pncan | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) | |
| 119 | 116 117 118 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 120 | 114 115 119 | 3eqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) |
| 121 | 102 120 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) |
| 122 | 121 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 123 | 60 122 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 124 | 56 123 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 125 | 124 | expimpd | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 126 | 51 | eqeq2d | ⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ↔ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 127 | 126 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ↔ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 128 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 129 | 4 128 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 130 | 129 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑀 ∈ ℤ ) |
| 131 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 132 | 4 131 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 133 | 132 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑁 ∈ ℤ ) |
| 134 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) | |
| 135 | 67 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 136 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 137 | 28 136 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 138 | 135 137 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 139 | 134 138 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 140 | 139 | elfzelzd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 ∈ ℤ ) |
| 141 | elfzle1 | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝑀 ≤ 𝑘 ) | |
| 142 | 139 141 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑀 ≤ 𝑘 ) |
| 143 | 140 | zred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 ∈ ℝ ) |
| 144 | 75 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝐾 ∈ ℝ ) |
| 145 | 132 | peano2zd | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 146 | 145 | zred | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℝ ) |
| 147 | 146 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 148 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) | |
| 149 | 134 148 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 < 𝐾 ) |
| 150 | elfzle2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝐾 ≤ ( 𝑁 + 1 ) ) | |
| 151 | 73 150 | syl | ⊢ ( 𝜑 → 𝐾 ≤ ( 𝑁 + 1 ) ) |
| 152 | 151 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝐾 ≤ ( 𝑁 + 1 ) ) |
| 153 | 143 144 147 149 152 | ltletrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 < ( 𝑁 + 1 ) ) |
| 154 | zleltp1 | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑘 ≤ 𝑁 ↔ 𝑘 < ( 𝑁 + 1 ) ) ) | |
| 155 | 140 133 154 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝑘 ≤ 𝑁 ↔ 𝑘 < ( 𝑁 + 1 ) ) ) |
| 156 | 153 155 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 ≤ 𝑁 ) |
| 157 | 130 133 140 142 156 | elfzd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 158 | 149 16 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 159 | 134 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 160 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 161 | f1ocnvfv2 | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) | |
| 162 | 160 137 161 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 163 | 158 159 162 | 3eqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) |
| 164 | 157 163 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) |
| 165 | 164 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 166 | 127 165 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 167 | 113 | eqeq2d | ⊢ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ↔ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) |
| 168 | 167 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ↔ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) |
| 169 | 129 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 170 | 132 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑁 ∈ ℤ ) |
| 171 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) | |
| 172 | 67 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 173 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 174 | 28 173 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 175 | 172 174 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 176 | 175 | elfzelzd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 177 | peano2zm | ⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℤ → ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ∈ ℤ ) | |
| 178 | 176 177 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ∈ ℤ ) |
| 179 | 171 178 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 180 | 129 | zred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 181 | 180 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 182 | 75 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ∈ ℝ ) |
| 183 | 179 | zred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 184 | elfzle1 | ⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝑀 ≤ 𝐾 ) | |
| 185 | 73 184 | syl | ⊢ ( 𝜑 → 𝑀 ≤ 𝐾 ) |
| 186 | 185 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑀 ≤ 𝐾 ) |
| 187 | 176 | zred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 188 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) | |
| 189 | 182 187 188 | nltled | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 190 | elfzelz | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℤ ) | |
| 191 | 190 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℤ ) |
| 192 | 191 | zred | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
| 193 | 132 | zred | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 194 | 193 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 195 | 146 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 196 | elfzle2 | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ≤ 𝑁 ) | |
| 197 | 196 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ≤ 𝑁 ) |
| 198 | 194 | ltp1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 < ( 𝑁 + 1 ) ) |
| 199 | 192 194 195 197 198 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 < ( 𝑁 + 1 ) ) |
| 200 | 192 199 | gtned | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑁 + 1 ) ≠ 𝑥 ) |
| 201 | 200 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑁 + 1 ) ≠ 𝑥 ) |
| 202 | 65 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 203 | 71 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 204 | f1fveq | ⊢ ( ( ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) ) → ( ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ↔ ( 𝑁 + 1 ) = 𝑥 ) ) | |
| 205 | 202 203 174 204 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ↔ ( 𝑁 + 1 ) = 𝑥 ) ) |
| 206 | 205 | necon3bid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ≠ ( ◡ 𝐹 ‘ 𝑥 ) ↔ ( 𝑁 + 1 ) ≠ 𝑥 ) ) |
| 207 | 201 206 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ≠ ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 208 | 9 | neeq1i | ⊢ ( 𝐾 ≠ ( ◡ 𝐹 ‘ 𝑥 ) ↔ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ≠ ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 209 | 207 208 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ≠ ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 210 | 209 | necomd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ≠ 𝐾 ) |
| 211 | 182 187 189 210 | leneltd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 < ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 212 | 74 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 213 | zltlem1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℤ ) → ( 𝐾 < ( ◡ 𝐹 ‘ 𝑥 ) ↔ 𝐾 ≤ ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) | |
| 214 | 212 176 213 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝐾 < ( ◡ 𝐹 ‘ 𝑥 ) ↔ 𝐾 ≤ ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) |
| 215 | 211 214 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ≤ ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) |
| 216 | 215 171 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ≤ 𝑘 ) |
| 217 | 181 182 183 186 216 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑀 ≤ 𝑘 ) |
| 218 | elfzle2 | ⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( 𝑁 + 1 ) ) | |
| 219 | 175 218 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( 𝑁 + 1 ) ) |
| 220 | 193 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑁 ∈ ℝ ) |
| 221 | 1re | ⊢ 1 ∈ ℝ | |
| 222 | lesubadd | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ≤ 𝑁 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( 𝑁 + 1 ) ) ) | |
| 223 | 221 222 | mp3an2 | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ≤ 𝑁 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( 𝑁 + 1 ) ) ) |
| 224 | 187 220 223 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ≤ 𝑁 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( 𝑁 + 1 ) ) ) |
| 225 | 219 224 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ≤ 𝑁 ) |
| 226 | 171 225 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑘 ≤ 𝑁 ) |
| 227 | 169 170 179 217 226 | elfzd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 228 | 182 183 216 | lensymd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ¬ 𝑘 < 𝐾 ) |
| 229 | 228 58 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 230 | 171 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑘 + 1 ) = ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) + 1 ) ) |
| 231 | 176 | zcnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 232 | npcan | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) + 1 ) = ( ◡ 𝐹 ‘ 𝑥 ) ) | |
| 233 | 231 117 232 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) + 1 ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 234 | 230 233 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑘 + 1 ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 235 | 234 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 236 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 237 | 236 174 161 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 238 | 229 235 237 | 3eqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) |
| 239 | 227 238 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) |
| 240 | 239 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 241 | 168 240 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 242 | 166 241 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 243 | 242 | expimpd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 244 | 125 243 | impbid | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ↔ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 245 | 8 10 14 244 | f1od | ⊢ ( 𝜑 → 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) |