This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqf1o.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqf1o.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | ||
| seqf1o.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| seqf1o.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqf1o.5 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) | ||
| seqf1olem2a.1 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐶 ) | ||
| seqf1olem2a.3 | ⊢ ( 𝜑 → 𝐾 ∈ 𝐴 ) | ||
| seqf1olem2a.4 | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ 𝐴 ) | ||
| Assertion | seqf1olem2a | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf1o.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqf1o.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | |
| 3 | seqf1o.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 4 | seqf1o.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | seqf1o.5 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) | |
| 6 | seqf1olem2a.1 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐶 ) | |
| 7 | seqf1olem2a.3 | ⊢ ( 𝜑 → 𝐾 ∈ 𝐴 ) | |
| 8 | seqf1olem2a.4 | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ 𝐴 ) | |
| 9 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 11 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
| 13 | 11 | oveq1d | ⊢ ( 𝑚 = 𝑀 → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) + ( 𝐺 ‘ 𝐾 ) ) ) |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑚 = 𝑀 → ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) ↔ ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) + ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) ) ↔ ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) + ( 𝐺 ‘ 𝐾 ) ) ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) |
| 18 | 16 | oveq1d | ⊢ ( 𝑚 = 𝑛 → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) ) |
| 19 | 17 18 | eqeq12d | ⊢ ( 𝑚 = 𝑛 → ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) ↔ ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) ) ↔ ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 22 | 21 | oveq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 23 | 21 | oveq1d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) ) |
| 24 | 22 23 | eqeq12d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) ↔ ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) ) ↔ ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) ) ) ) |
| 26 | fveq2 | ⊢ ( 𝑚 = 𝑁 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) | |
| 27 | 26 | oveq2d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 28 | 26 | oveq1d | ⊢ ( 𝑚 = 𝑁 → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ 𝐾 ) ) ) |
| 29 | 27 28 | eqeq12d | ⊢ ( 𝑚 = 𝑁 → ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) ↔ ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 30 | 29 | imbi2d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) + ( 𝐺 ‘ 𝐾 ) ) ) ↔ ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ 𝐾 ) ) ) ) ) |
| 31 | 6 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐾 ) ∈ 𝐶 ) |
| 32 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 33 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) | |
| 34 | 4 32 33 | 3syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
| 35 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 36 | 4 35 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 37 | 8 36 | sseldd | ⊢ ( 𝜑 → 𝑀 ∈ 𝐴 ) |
| 38 | 6 37 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) ∈ 𝐶 ) |
| 39 | 34 38 | eqeltrd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ∈ 𝐶 ) |
| 40 | 2 31 39 | caovcomd | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) + ( 𝐺 ‘ 𝐾 ) ) ) |
| 41 | 40 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) + ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 42 | oveq1 | ⊢ ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) → ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 43 | elfzouz | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 44 | 43 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 45 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 47 | 46 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( 𝐺 ‘ 𝐾 ) + ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 48 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 49 | 5 31 | sseldd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐾 ) ∈ 𝑆 ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ 𝐾 ) ∈ 𝑆 ) |
| 51 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐶 ⊆ 𝑆 ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐶 ⊆ 𝑆 ) |
| 53 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐺 : 𝐴 ⟶ 𝐶 ) |
| 54 | 53 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐺 : 𝐴 ⟶ 𝐶 ) |
| 55 | elfzouz2 | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 56 | 55 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 57 | fzss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 59 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ... 𝑁 ) ⊆ 𝐴 ) |
| 60 | 58 59 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ... 𝑛 ) ⊆ 𝐴 ) |
| 61 | 60 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
| 62 | 54 61 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) |
| 63 | 52 62 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
| 64 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 65 | 44 63 64 | seqcl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ 𝑆 ) |
| 66 | fzofzp1 | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 67 | 66 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 68 | 59 67 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑛 + 1 ) ∈ 𝐴 ) |
| 69 | 53 68 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝐶 ) |
| 70 | 51 69 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 71 | 48 50 65 70 | caovassd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( 𝐺 ‘ 𝐾 ) + ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 72 | 47 71 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 73 | 48 65 70 50 | caovassd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) + ( 𝐺 ‘ 𝐾 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( ( 𝐺 ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 74 | 46 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) = ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) + ( 𝐺 ‘ 𝐾 ) ) ) |
| 75 | 48 65 50 70 | caovassd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( ( 𝐺 ‘ 𝐾 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 76 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 77 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ 𝐾 ) ∈ 𝐶 ) |
| 78 | 76 69 77 | caovcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) = ( ( 𝐺 ‘ 𝐾 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 79 | 78 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( ( 𝐺 ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( ( 𝐺 ‘ 𝐾 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 80 | 75 79 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( ( 𝐺 ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 81 | 73 74 80 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) = ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 82 | 72 81 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) ↔ ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 83 | 42 82 | imbitrrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 84 | 83 | expcom | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝜑 → ( ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) ) ) ) |
| 85 | 84 | a2d | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ 𝐾 ) ) ) → ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) + ( 𝐺 ‘ 𝐾 ) ) ) ) ) |
| 86 | 15 20 25 30 41 85 | fzind2 | ⊢ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 87 | 10 86 | mpcom | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐾 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ 𝐾 ) ) ) |