This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluzp1p1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 + 1 ) ∈ ℤ ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝑀 + 1 ) ∈ ℤ ) |
| 3 | peano2z | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℤ ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝑁 + 1 ) ∈ ℤ ) |
| 5 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 6 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 7 | 1re | ⊢ 1 ∈ ℝ | |
| 8 | leadd1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 + 1 ) ≤ ( 𝑁 + 1 ) ) ) | |
| 9 | 7 8 | mp3an3 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 + 1 ) ≤ ( 𝑁 + 1 ) ) ) |
| 10 | 5 6 9 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 + 1 ) ≤ ( 𝑁 + 1 ) ) ) |
| 11 | 10 | biimp3a | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝑀 + 1 ) ≤ ( 𝑁 + 1 ) ) |
| 12 | 2 4 11 | 3jca | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑀 + 1 ) ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ ( 𝑁 + 1 ) ) ) |
| 13 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) | |
| 14 | eluz2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ↔ ( ( 𝑀 + 1 ) ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ ( 𝑁 + 1 ) ) ) | |
| 15 | 12 13 14 | 3imtr4i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |