This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeq1 | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → seq 𝑀 ( + , 𝐹 ) = seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ) | |
| 2 | id | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) | |
| 3 | 1 2 | fveq12d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( 𝐹 ‘ 𝑀 ) = ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) | |
| 5 | 3 4 | eqeq12d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ↔ ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) ) |
| 6 | 0z | ⊢ 0 ∈ ℤ | |
| 7 | 6 | elimel | ⊢ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ∈ ℤ |
| 8 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) | |
| 9 | fvex | ⊢ ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ∈ V | |
| 10 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) | |
| 11 | 10 | seqval | ⊢ seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) |
| 12 | 7 8 9 10 11 | uzrdg0i | ⊢ ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) = ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) |
| 13 | 5 12 | dedth | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |