This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 27-Feb-2014) (Revised by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqf1o.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| seqf1o.2 | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
||
| seqf1o.3 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
| seqf1o.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| seqf1o.5 | |- ( ph -> C C_ S ) |
||
| seqf1olem.5 | |- ( ph -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
||
| seqf1olem.6 | |- ( ph -> G : ( M ... ( N + 1 ) ) --> C ) |
||
| seqf1olem.7 | |- J = ( k e. ( M ... N ) |-> ( F ` if ( k < K , k , ( k + 1 ) ) ) ) |
||
| seqf1olem.8 | |- K = ( `' F ` ( N + 1 ) ) |
||
| seqf1olem.9 | |- ( ph -> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) |
||
| Assertion | seqf1olem2 | |- ( ph -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( seq M ( .+ , G ) ` ( N + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf1o.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 2 | seqf1o.2 | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
|
| 3 | seqf1o.3 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
| 4 | seqf1o.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 5 | seqf1o.5 | |- ( ph -> C C_ S ) |
|
| 6 | seqf1olem.5 | |- ( ph -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
|
| 7 | seqf1olem.6 | |- ( ph -> G : ( M ... ( N + 1 ) ) --> C ) |
|
| 8 | seqf1olem.7 | |- J = ( k e. ( M ... N ) |-> ( F ` if ( k < K , k , ( k + 1 ) ) ) ) |
|
| 9 | seqf1olem.8 | |- K = ( `' F ` ( N + 1 ) ) |
|
| 10 | seqf1olem.9 | |- ( ph -> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) |
|
| 11 | 7 | ffnd | |- ( ph -> G Fn ( M ... ( N + 1 ) ) ) |
| 12 | fzssp1 | |- ( M ... N ) C_ ( M ... ( N + 1 ) ) |
|
| 13 | fnssres | |- ( ( G Fn ( M ... ( N + 1 ) ) /\ ( M ... N ) C_ ( M ... ( N + 1 ) ) ) -> ( G |` ( M ... N ) ) Fn ( M ... N ) ) |
|
| 14 | 11 12 13 | sylancl | |- ( ph -> ( G |` ( M ... N ) ) Fn ( M ... N ) ) |
| 15 | fzfid | |- ( ph -> ( M ... N ) e. Fin ) |
|
| 16 | fnfi | |- ( ( ( G |` ( M ... N ) ) Fn ( M ... N ) /\ ( M ... N ) e. Fin ) -> ( G |` ( M ... N ) ) e. Fin ) |
|
| 17 | 14 15 16 | syl2anc | |- ( ph -> ( G |` ( M ... N ) ) e. Fin ) |
| 18 | 17 | elexd | |- ( ph -> ( G |` ( M ... N ) ) e. _V ) |
| 19 | 1 2 3 4 5 6 7 8 9 | seqf1olem1 | |- ( ph -> J : ( M ... N ) -1-1-onto-> ( M ... N ) ) |
| 20 | f1of | |- ( J : ( M ... N ) -1-1-onto-> ( M ... N ) -> J : ( M ... N ) --> ( M ... N ) ) |
|
| 21 | 19 20 | syl | |- ( ph -> J : ( M ... N ) --> ( M ... N ) ) |
| 22 | fex2 | |- ( ( J : ( M ... N ) --> ( M ... N ) /\ ( M ... N ) e. Fin /\ ( M ... N ) e. Fin ) -> J e. _V ) |
|
| 23 | 21 15 15 22 | syl3anc | |- ( ph -> J e. _V ) |
| 24 | 18 23 | jca | |- ( ph -> ( ( G |` ( M ... N ) ) e. _V /\ J e. _V ) ) |
| 25 | fssres | |- ( ( G : ( M ... ( N + 1 ) ) --> C /\ ( M ... N ) C_ ( M ... ( N + 1 ) ) ) -> ( G |` ( M ... N ) ) : ( M ... N ) --> C ) |
|
| 26 | 7 12 25 | sylancl | |- ( ph -> ( G |` ( M ... N ) ) : ( M ... N ) --> C ) |
| 27 | 19 26 | jca | |- ( ph -> ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) ) |
| 28 | f1oeq1 | |- ( f = J -> ( f : ( M ... N ) -1-1-onto-> ( M ... N ) <-> J : ( M ... N ) -1-1-onto-> ( M ... N ) ) ) |
|
| 29 | feq1 | |- ( g = ( G |` ( M ... N ) ) -> ( g : ( M ... N ) --> C <-> ( G |` ( M ... N ) ) : ( M ... N ) --> C ) ) |
|
| 30 | 28 29 | bi2anan9r | |- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) <-> ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) ) ) |
| 31 | coeq1 | |- ( g = ( G |` ( M ... N ) ) -> ( g o. f ) = ( ( G |` ( M ... N ) ) o. f ) ) |
|
| 32 | coeq2 | |- ( f = J -> ( ( G |` ( M ... N ) ) o. f ) = ( ( G |` ( M ... N ) ) o. J ) ) |
|
| 33 | 31 32 | sylan9eq | |- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( g o. f ) = ( ( G |` ( M ... N ) ) o. J ) ) |
| 34 | 33 | seqeq3d | |- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> seq M ( .+ , ( g o. f ) ) = seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ) |
| 35 | 34 | fveq1d | |- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) |
| 36 | simpl | |- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> g = ( G |` ( M ... N ) ) ) |
|
| 37 | 36 | seqeq3d | |- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> seq M ( .+ , g ) = seq M ( .+ , ( G |` ( M ... N ) ) ) ) |
| 38 | 37 | fveq1d | |- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( seq M ( .+ , g ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) |
| 39 | 35 38 | eqeq12d | |- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) <-> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) ) |
| 40 | 30 39 | imbi12d | |- ( ( g = ( G |` ( M ... N ) ) /\ f = J ) -> ( ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) <-> ( ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) ) ) |
| 41 | 40 | spc2gv | |- ( ( ( G |` ( M ... N ) ) e. _V /\ J e. _V ) -> ( A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) -> ( ( J : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( G |` ( M ... N ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) ) ) |
| 42 | 24 10 27 41 | syl3c | |- ( ph -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) ) |
| 43 | fvres | |- ( x e. ( M ... N ) -> ( ( G |` ( M ... N ) ) ` x ) = ( G ` x ) ) |
|
| 44 | 43 | adantl | |- ( ( ph /\ x e. ( M ... N ) ) -> ( ( G |` ( M ... N ) ) ` x ) = ( G ` x ) ) |
| 45 | 4 44 | seqfveq | |- ( ph -> ( seq M ( .+ , ( G |` ( M ... N ) ) ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |
| 46 | 42 45 | eqtrd | |- ( ph -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |
| 47 | 46 | oveq1d | |- ( ph -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 48 | 1 | adantlr | |- ( ( ( ph /\ K e. ( M ... N ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 49 | 3 | adantlr | |- ( ( ( ph /\ K e. ( M ... N ) ) /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 50 | elfzuz3 | |- ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) |
|
| 51 | 50 | adantl | |- ( ( ph /\ K e. ( M ... N ) ) -> N e. ( ZZ>= ` K ) ) |
| 52 | eluzp1p1 | |- ( N e. ( ZZ>= ` K ) -> ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
|
| 53 | 51 52 | syl | |- ( ( ph /\ K e. ( M ... N ) ) -> ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
| 54 | elfzuz | |- ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) |
|
| 55 | 54 | adantl | |- ( ( ph /\ K e. ( M ... N ) ) -> K e. ( ZZ>= ` M ) ) |
| 56 | f1of | |- ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
|
| 57 | 6 56 | syl | |- ( ph -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
| 58 | fco | |- ( ( G : ( M ... ( N + 1 ) ) --> C /\ F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) -> ( G o. F ) : ( M ... ( N + 1 ) ) --> C ) |
|
| 59 | 7 57 58 | syl2anc | |- ( ph -> ( G o. F ) : ( M ... ( N + 1 ) ) --> C ) |
| 60 | 59 5 | fssd | |- ( ph -> ( G o. F ) : ( M ... ( N + 1 ) ) --> S ) |
| 61 | 60 | ffvelcdmda | |- ( ( ph /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) |
| 62 | 61 | adantlr | |- ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) |
| 63 | 48 49 53 55 62 | seqsplit | |- ( ( ph /\ K e. ( M ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) |
| 64 | elfzp12 | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
|
| 65 | 64 | biimpa | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ( M ... N ) ) -> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) |
| 66 | 4 65 | sylan | |- ( ( ph /\ K e. ( M ... N ) ) -> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) |
| 67 | seqeq1 | |- ( K = M -> seq K ( .+ , ( G o. F ) ) = seq M ( .+ , ( G o. F ) ) ) |
|
| 68 | 67 | eqcomd | |- ( K = M -> seq M ( .+ , ( G o. F ) ) = seq K ( .+ , ( G o. F ) ) ) |
| 69 | 68 | fveq1d | |- ( K = M -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( seq K ( .+ , ( G o. F ) ) ` K ) ) |
| 70 | f1ocnv | |- ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> `' F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
|
| 71 | f1of | |- ( `' F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) -> `' F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
|
| 72 | 6 70 71 | 3syl | |- ( ph -> `' F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
| 73 | peano2uz | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
|
| 74 | eluzfz2 | |- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
|
| 75 | 4 73 74 | 3syl | |- ( ph -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
| 76 | 72 75 | ffvelcdmd | |- ( ph -> ( `' F ` ( N + 1 ) ) e. ( M ... ( N + 1 ) ) ) |
| 77 | 9 76 | eqeltrid | |- ( ph -> K e. ( M ... ( N + 1 ) ) ) |
| 78 | elfzelz | |- ( K e. ( M ... ( N + 1 ) ) -> K e. ZZ ) |
|
| 79 | seq1 | |- ( K e. ZZ -> ( seq K ( .+ , ( G o. F ) ) ` K ) = ( ( G o. F ) ` K ) ) |
|
| 80 | 77 78 79 | 3syl | |- ( ph -> ( seq K ( .+ , ( G o. F ) ) ` K ) = ( ( G o. F ) ` K ) ) |
| 81 | 69 80 | sylan9eqr | |- ( ( ph /\ K = M ) -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( ( G o. F ) ` K ) ) |
| 82 | 81 | oveq1d | |- ( ( ph /\ K = M ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) |
| 83 | simpr | |- ( ( ph /\ K = M ) -> K = M ) |
|
| 84 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 85 | 4 84 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 86 | 85 | adantr | |- ( ( ph /\ K = M ) -> M e. ( M ... N ) ) |
| 87 | 83 86 | eqeltrd | |- ( ( ph /\ K = M ) -> K e. ( M ... N ) ) |
| 88 | 2 | adantlr | |- ( ( ( ph /\ K e. ( M ... N ) ) /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
| 89 | 5 | adantr | |- ( ( ph /\ K e. ( M ... N ) ) -> C C_ S ) |
| 90 | 59 | adantr | |- ( ( ph /\ K e. ( M ... N ) ) -> ( G o. F ) : ( M ... ( N + 1 ) ) --> C ) |
| 91 | 77 | adantr | |- ( ( ph /\ K e. ( M ... N ) ) -> K e. ( M ... ( N + 1 ) ) ) |
| 92 | peano2uz | |- ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
|
| 93 | fzss1 | |- ( ( K + 1 ) e. ( ZZ>= ` M ) -> ( ( K + 1 ) ... ( N + 1 ) ) C_ ( M ... ( N + 1 ) ) ) |
|
| 94 | 55 92 93 | 3syl | |- ( ( ph /\ K e. ( M ... N ) ) -> ( ( K + 1 ) ... ( N + 1 ) ) C_ ( M ... ( N + 1 ) ) ) |
| 95 | 48 88 49 53 89 90 91 94 | seqf1olem2a | |- ( ( ph /\ K e. ( M ... N ) ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) .+ ( ( G o. F ) ` K ) ) ) |
| 96 | 1zzd | |- ( ( ph /\ K e. ( M ... N ) ) -> 1 e. ZZ ) |
|
| 97 | elfzuz | |- ( K e. ( M ... ( N + 1 ) ) -> K e. ( ZZ>= ` M ) ) |
|
| 98 | fzss1 | |- ( K e. ( ZZ>= ` M ) -> ( K ... N ) C_ ( M ... N ) ) |
|
| 99 | 77 97 98 | 3syl | |- ( ph -> ( K ... N ) C_ ( M ... N ) ) |
| 100 | 99 | sselda | |- ( ( ph /\ x e. ( K ... N ) ) -> x e. ( M ... N ) ) |
| 101 | 21 | ffvelcdmda | |- ( ( ph /\ x e. ( M ... N ) ) -> ( J ` x ) e. ( M ... N ) ) |
| 102 | 100 101 | syldan | |- ( ( ph /\ x e. ( K ... N ) ) -> ( J ` x ) e. ( M ... N ) ) |
| 103 | 102 | fvresd | |- ( ( ph /\ x e. ( K ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( G ` ( J ` x ) ) ) |
| 104 | breq1 | |- ( k = x -> ( k < K <-> x < K ) ) |
|
| 105 | id | |- ( k = x -> k = x ) |
|
| 106 | oveq1 | |- ( k = x -> ( k + 1 ) = ( x + 1 ) ) |
|
| 107 | 104 105 106 | ifbieq12d | |- ( k = x -> if ( k < K , k , ( k + 1 ) ) = if ( x < K , x , ( x + 1 ) ) ) |
| 108 | 107 | fveq2d | |- ( k = x -> ( F ` if ( k < K , k , ( k + 1 ) ) ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) |
| 109 | fvex | |- ( F ` if ( x < K , x , ( x + 1 ) ) ) e. _V |
|
| 110 | 108 8 109 | fvmpt | |- ( x e. ( M ... N ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) |
| 111 | 100 110 | syl | |- ( ( ph /\ x e. ( K ... N ) ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) |
| 112 | 77 78 | syl | |- ( ph -> K e. ZZ ) |
| 113 | 112 | zred | |- ( ph -> K e. RR ) |
| 114 | 113 | adantr | |- ( ( ph /\ x e. ( K ... N ) ) -> K e. RR ) |
| 115 | elfzelz | |- ( x e. ( K ... N ) -> x e. ZZ ) |
|
| 116 | 115 | adantl | |- ( ( ph /\ x e. ( K ... N ) ) -> x e. ZZ ) |
| 117 | 116 | zred | |- ( ( ph /\ x e. ( K ... N ) ) -> x e. RR ) |
| 118 | elfzle1 | |- ( x e. ( K ... N ) -> K <_ x ) |
|
| 119 | 118 | adantl | |- ( ( ph /\ x e. ( K ... N ) ) -> K <_ x ) |
| 120 | 114 117 119 | lensymd | |- ( ( ph /\ x e. ( K ... N ) ) -> -. x < K ) |
| 121 | iffalse | |- ( -. x < K -> if ( x < K , x , ( x + 1 ) ) = ( x + 1 ) ) |
|
| 122 | 121 | fveq2d | |- ( -. x < K -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` ( x + 1 ) ) ) |
| 123 | 120 122 | syl | |- ( ( ph /\ x e. ( K ... N ) ) -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` ( x + 1 ) ) ) |
| 124 | 111 123 | eqtrd | |- ( ( ph /\ x e. ( K ... N ) ) -> ( J ` x ) = ( F ` ( x + 1 ) ) ) |
| 125 | 124 | fveq2d | |- ( ( ph /\ x e. ( K ... N ) ) -> ( G ` ( J ` x ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) |
| 126 | 103 125 | eqtrd | |- ( ( ph /\ x e. ( K ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) |
| 127 | fvco3 | |- ( ( J : ( M ... N ) --> ( M ... N ) /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
|
| 128 | 21 127 | sylan | |- ( ( ph /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
| 129 | 100 128 | syldan | |- ( ( ph /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
| 130 | fzp1elp1 | |- ( x e. ( M ... N ) -> ( x + 1 ) e. ( M ... ( N + 1 ) ) ) |
|
| 131 | 100 130 | syl | |- ( ( ph /\ x e. ( K ... N ) ) -> ( x + 1 ) e. ( M ... ( N + 1 ) ) ) |
| 132 | fvco3 | |- ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ ( x + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` ( x + 1 ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) |
|
| 133 | 57 132 | sylan | |- ( ( ph /\ ( x + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` ( x + 1 ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) |
| 134 | 131 133 | syldan | |- ( ( ph /\ x e. ( K ... N ) ) -> ( ( G o. F ) ` ( x + 1 ) ) = ( G ` ( F ` ( x + 1 ) ) ) ) |
| 135 | 126 129 134 | 3eqtr4d | |- ( ( ph /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G o. F ) ` ( x + 1 ) ) ) |
| 136 | 135 | adantlr | |- ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G o. F ) ` ( x + 1 ) ) ) |
| 137 | 51 96 136 | seqshft2 | |- ( ( ph /\ K e. ( M ... N ) ) -> ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) |
| 138 | fvco3 | |- ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ K e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` K ) = ( G ` ( F ` K ) ) ) |
|
| 139 | 57 77 138 | syl2anc | |- ( ph -> ( ( G o. F ) ` K ) = ( G ` ( F ` K ) ) ) |
| 140 | 9 | fveq2i | |- ( F ` K ) = ( F ` ( `' F ` ( N + 1 ) ) ) |
| 141 | f1ocnvfv2 | |- ( ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( N + 1 ) ) |
|
| 142 | 6 75 141 | syl2anc | |- ( ph -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( N + 1 ) ) |
| 143 | 140 142 | eqtrid | |- ( ph -> ( F ` K ) = ( N + 1 ) ) |
| 144 | 143 | fveq2d | |- ( ph -> ( G ` ( F ` K ) ) = ( G ` ( N + 1 ) ) ) |
| 145 | 139 144 | eqtr2d | |- ( ph -> ( G ` ( N + 1 ) ) = ( ( G o. F ) ` K ) ) |
| 146 | 145 | adantr | |- ( ( ph /\ K e. ( M ... N ) ) -> ( G ` ( N + 1 ) ) = ( ( G o. F ) ` K ) ) |
| 147 | 137 146 | oveq12d | |- ( ( ph /\ K e. ( M ... N ) ) -> ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) .+ ( ( G o. F ) ` K ) ) ) |
| 148 | 95 147 | eqtr4d | |- ( ( ph /\ K e. ( M ... N ) ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 149 | 87 148 | syldan | |- ( ( ph /\ K = M ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 150 | 83 | seqeq1d | |- ( ( ph /\ K = M ) -> seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) = seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ) |
| 151 | 150 | fveq1d | |- ( ( ph /\ K = M ) -> ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) |
| 152 | 151 | oveq1d | |- ( ( ph /\ K = M ) -> ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 153 | 82 149 152 | 3eqtrd | |- ( ( ph /\ K = M ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 154 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 155 | 4 154 | syl | |- ( ph -> M e. ZZ ) |
| 156 | elfzuz | |- ( K e. ( ( M + 1 ) ... N ) -> K e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 157 | eluzp1m1 | |- ( ( M e. ZZ /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( K - 1 ) e. ( ZZ>= ` M ) ) |
|
| 158 | 155 156 157 | syl2an | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( K - 1 ) e. ( ZZ>= ` M ) ) |
| 159 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 160 | 4 159 | syl | |- ( ph -> N e. ZZ ) |
| 161 | 160 | zcnd | |- ( ph -> N e. CC ) |
| 162 | ax-1cn | |- 1 e. CC |
|
| 163 | pncan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
|
| 164 | 161 162 163 | sylancl | |- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
| 165 | peano2zm | |- ( K e. ZZ -> ( K - 1 ) e. ZZ ) |
|
| 166 | 77 78 165 | 3syl | |- ( ph -> ( K - 1 ) e. ZZ ) |
| 167 | elfzuz3 | |- ( K e. ( M ... ( N + 1 ) ) -> ( N + 1 ) e. ( ZZ>= ` K ) ) |
|
| 168 | 77 167 | syl | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` K ) ) |
| 169 | 112 | zcnd | |- ( ph -> K e. CC ) |
| 170 | npcan | |- ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) |
|
| 171 | 169 162 170 | sylancl | |- ( ph -> ( ( K - 1 ) + 1 ) = K ) |
| 172 | 171 | fveq2d | |- ( ph -> ( ZZ>= ` ( ( K - 1 ) + 1 ) ) = ( ZZ>= ` K ) ) |
| 173 | 168 172 | eleqtrrd | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) |
| 174 | eluzp1m1 | |- ( ( ( K - 1 ) e. ZZ /\ ( N + 1 ) e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) -> ( ( N + 1 ) - 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) |
|
| 175 | 166 173 174 | syl2anc | |- ( ph -> ( ( N + 1 ) - 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) |
| 176 | 164 175 | eqeltrrd | |- ( ph -> N e. ( ZZ>= ` ( K - 1 ) ) ) |
| 177 | fzss2 | |- ( N e. ( ZZ>= ` ( K - 1 ) ) -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) |
|
| 178 | 176 177 | syl | |- ( ph -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) |
| 179 | 178 | sselda | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( M ... N ) ) |
| 180 | 179 101 | syldan | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( J ` x ) e. ( M ... N ) ) |
| 181 | 180 | fvresd | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( G ` ( J ` x ) ) ) |
| 182 | 179 110 | syl | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) |
| 183 | elfzm11 | |- ( ( M e. ZZ /\ K e. ZZ ) -> ( x e. ( M ... ( K - 1 ) ) <-> ( x e. ZZ /\ M <_ x /\ x < K ) ) ) |
|
| 184 | 155 112 183 | syl2anc | |- ( ph -> ( x e. ( M ... ( K - 1 ) ) <-> ( x e. ZZ /\ M <_ x /\ x < K ) ) ) |
| 185 | 184 | biimpa | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( x e. ZZ /\ M <_ x /\ x < K ) ) |
| 186 | 185 | simp3d | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> x < K ) |
| 187 | iftrue | |- ( x < K -> if ( x < K , x , ( x + 1 ) ) = x ) |
|
| 188 | 187 | fveq2d | |- ( x < K -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` x ) ) |
| 189 | 186 188 | syl | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` x ) ) |
| 190 | 182 189 | eqtrd | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( J ` x ) = ( F ` x ) ) |
| 191 | 190 | fveq2d | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( G ` ( J ` x ) ) = ( G ` ( F ` x ) ) ) |
| 192 | 181 191 | eqtr2d | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( G ` ( F ` x ) ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
| 193 | peano2uz | |- ( N e. ( ZZ>= ` ( K - 1 ) ) -> ( N + 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) |
|
| 194 | fzss2 | |- ( ( N + 1 ) e. ( ZZ>= ` ( K - 1 ) ) -> ( M ... ( K - 1 ) ) C_ ( M ... ( N + 1 ) ) ) |
|
| 195 | 176 193 194 | 3syl | |- ( ph -> ( M ... ( K - 1 ) ) C_ ( M ... ( N + 1 ) ) ) |
| 196 | 195 | sselda | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( M ... ( N + 1 ) ) ) |
| 197 | fvco3 | |- ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
|
| 198 | 57 197 | sylan | |- ( ( ph /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
| 199 | 196 198 | syldan | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
| 200 | 179 128 | syldan | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
| 201 | 192 199 200 | 3eqtr4d | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) = ( ( ( G |` ( M ... N ) ) o. J ) ` x ) ) |
| 202 | 201 | adantlr | |- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) = ( ( ( G |` ( M ... N ) ) o. J ) ` x ) ) |
| 203 | 158 202 | seqfveq | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) ) |
| 204 | fzp1ss | |- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
|
| 205 | 4 154 204 | 3syl | |- ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
| 206 | 205 | sselda | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> K e. ( M ... N ) ) |
| 207 | 206 148 | syldan | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 208 | 203 207 | oveq12d | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) ) |
| 209 | 196 61 | syldan | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) |
| 210 | 209 | adantlr | |- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) |
| 211 | 1 | adantlr | |- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 212 | 158 210 211 | seqcl | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) e. S ) |
| 213 | 59 77 | ffvelcdmd | |- ( ph -> ( ( G o. F ) ` K ) e. C ) |
| 214 | 5 213 | sseldd | |- ( ph -> ( ( G o. F ) ` K ) e. S ) |
| 215 | 214 | adantr | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( G o. F ) ` K ) e. S ) |
| 216 | 94 | sselda | |- ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( ( K + 1 ) ... ( N + 1 ) ) ) -> x e. ( M ... ( N + 1 ) ) ) |
| 217 | 216 62 | syldan | |- ( ( ( ph /\ K e. ( M ... N ) ) /\ x e. ( ( K + 1 ) ... ( N + 1 ) ) ) -> ( ( G o. F ) ` x ) e. S ) |
| 218 | 53 217 48 | seqcl | |- ( ( ph /\ K e. ( M ... N ) ) -> ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) |
| 219 | 206 218 | syldan | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) |
| 220 | 212 215 219 | 3jca | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) e. S /\ ( ( G o. F ) ` K ) e. S /\ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) ) |
| 221 | 3 | caovassg | |- ( ( ph /\ ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) e. S /\ ( ( G o. F ) ` K ) e. S /\ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) e. S ) ) -> ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) ) |
| 222 | 220 221 | syldan | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( ( G o. F ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) ) |
| 223 | 7 5 | fssd | |- ( ph -> G : ( M ... ( N + 1 ) ) --> S ) |
| 224 | fssres | |- ( ( G : ( M ... ( N + 1 ) ) --> S /\ ( M ... N ) C_ ( M ... ( N + 1 ) ) ) -> ( G |` ( M ... N ) ) : ( M ... N ) --> S ) |
|
| 225 | 223 12 224 | sylancl | |- ( ph -> ( G |` ( M ... N ) ) : ( M ... N ) --> S ) |
| 226 | fco | |- ( ( ( G |` ( M ... N ) ) : ( M ... N ) --> S /\ J : ( M ... N ) --> ( M ... N ) ) -> ( ( G |` ( M ... N ) ) o. J ) : ( M ... N ) --> S ) |
|
| 227 | 225 21 226 | syl2anc | |- ( ph -> ( ( G |` ( M ... N ) ) o. J ) : ( M ... N ) --> S ) |
| 228 | 227 | ffvelcdmda | |- ( ( ph /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
| 229 | 179 228 | syldan | |- ( ( ph /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
| 230 | 229 | adantlr | |- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
| 231 | 158 230 211 | seqcl | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) e. S ) |
| 232 | elfzuz3 | |- ( K e. ( ( M + 1 ) ... N ) -> N e. ( ZZ>= ` K ) ) |
|
| 233 | 232 | adantl | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> N e. ( ZZ>= ` K ) ) |
| 234 | 100 228 | syldan | |- ( ( ph /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
| 235 | 234 | adantlr | |- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( K ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
| 236 | 233 235 211 | seqcl | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) e. S ) |
| 237 | 223 75 | ffvelcdmd | |- ( ph -> ( G ` ( N + 1 ) ) e. S ) |
| 238 | 237 | adantr | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( G ` ( N + 1 ) ) e. S ) |
| 239 | 231 236 238 | 3jca | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) e. S /\ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) e. S /\ ( G ` ( N + 1 ) ) e. S ) ) |
| 240 | 3 | caovassg | |- ( ( ph /\ ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) e. S /\ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) e. S /\ ( G ` ( N + 1 ) ) e. S ) ) -> ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) ) |
| 241 | 239 240 | syldan | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) ) |
| 242 | 208 222 241 | 3eqtr4d | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) ) |
| 243 | seqm1 | |- ( ( M e. ZZ /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) ) |
|
| 244 | 155 156 243 | syl2an | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` K ) = ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) ) |
| 245 | 244 | oveq1d | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( ( seq M ( .+ , ( G o. F ) ) ` ( K - 1 ) ) .+ ( ( G o. F ) ` K ) ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) ) |
| 246 | 3 | adantlr | |- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 247 | elfzelz | |- ( K e. ( ( M + 1 ) ... N ) -> K e. ZZ ) |
|
| 248 | 247 | adantl | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> K e. ZZ ) |
| 249 | 248 | zcnd | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> K e. CC ) |
| 250 | 249 162 170 | sylancl | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( K - 1 ) + 1 ) = K ) |
| 251 | 250 | fveq2d | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ZZ>= ` ( ( K - 1 ) + 1 ) ) = ( ZZ>= ` K ) ) |
| 252 | 233 251 | eleqtrrd | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) |
| 253 | 228 | adantlr | |- ( ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) e. S ) |
| 254 | 211 246 252 158 253 | seqsplit | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) ) |
| 255 | 250 | seqeq1d | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) = seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ) |
| 256 | 255 | fveq1d | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) |
| 257 | 256 | oveq2d | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq ( ( K - 1 ) + 1 ) ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) ) |
| 258 | 254 257 | eqtrd | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) ) |
| 259 | 258 | oveq1d | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) = ( ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` ( K - 1 ) ) .+ ( seq K ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) .+ ( G ` ( N + 1 ) ) ) ) |
| 260 | 242 245 259 | 3eqtr4d | |- ( ( ph /\ K e. ( ( M + 1 ) ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 261 | 153 260 | jaodan | |- ( ( ph /\ ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 262 | 66 261 | syldan | |- ( ( ph /\ K e. ( M ... N ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` K ) .+ ( seq ( K + 1 ) ( .+ , ( G o. F ) ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 263 | 63 262 | eqtrd | |- ( ( ph /\ K e. ( M ... N ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 264 | 4 | adantr | |- ( ( ph /\ K = ( N + 1 ) ) -> N e. ( ZZ>= ` M ) ) |
| 265 | seqp1 | |- ( N e. ( ZZ>= ` M ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` N ) .+ ( ( G o. F ) ` ( N + 1 ) ) ) ) |
|
| 266 | 264 265 | syl | |- ( ( ph /\ K = ( N + 1 ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( G o. F ) ) ` N ) .+ ( ( G o. F ) ` ( N + 1 ) ) ) ) |
| 267 | 110 | adantl | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( J ` x ) = ( F ` if ( x < K , x , ( x + 1 ) ) ) ) |
| 268 | elfzelz | |- ( x e. ( M ... N ) -> x e. ZZ ) |
|
| 269 | 268 | zred | |- ( x e. ( M ... N ) -> x e. RR ) |
| 270 | 269 | adantl | |- ( ( ph /\ x e. ( M ... N ) ) -> x e. RR ) |
| 271 | 160 | zred | |- ( ph -> N e. RR ) |
| 272 | 271 | adantr | |- ( ( ph /\ x e. ( M ... N ) ) -> N e. RR ) |
| 273 | peano2re | |- ( N e. RR -> ( N + 1 ) e. RR ) |
|
| 274 | 272 273 | syl | |- ( ( ph /\ x e. ( M ... N ) ) -> ( N + 1 ) e. RR ) |
| 275 | elfzle2 | |- ( x e. ( M ... N ) -> x <_ N ) |
|
| 276 | 275 | adantl | |- ( ( ph /\ x e. ( M ... N ) ) -> x <_ N ) |
| 277 | 272 | ltp1d | |- ( ( ph /\ x e. ( M ... N ) ) -> N < ( N + 1 ) ) |
| 278 | 270 272 274 276 277 | lelttrd | |- ( ( ph /\ x e. ( M ... N ) ) -> x < ( N + 1 ) ) |
| 279 | 278 | adantlr | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x < ( N + 1 ) ) |
| 280 | simplr | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> K = ( N + 1 ) ) |
|
| 281 | 279 280 | breqtrrd | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x < K ) |
| 282 | 281 188 | syl | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( F ` if ( x < K , x , ( x + 1 ) ) ) = ( F ` x ) ) |
| 283 | 267 282 | eqtrd | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( J ` x ) = ( F ` x ) ) |
| 284 | 283 | fveq2d | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( J ` x ) ) = ( ( G |` ( M ... N ) ) ` ( F ` x ) ) ) |
| 285 | 269 | adantl | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x e. RR ) |
| 286 | 285 281 | gtned | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> K =/= x ) |
| 287 | 57 | ad2antrr | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) ) |
| 288 | fzelp1 | |- ( x e. ( M ... N ) -> x e. ( M ... ( N + 1 ) ) ) |
|
| 289 | 288 | adantl | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> x e. ( M ... ( N + 1 ) ) ) |
| 290 | 287 289 | ffvelcdmd | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. ( M ... ( N + 1 ) ) ) |
| 291 | 4 | ad2antrr | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> N e. ( ZZ>= ` M ) ) |
| 292 | elfzp1 | |- ( N e. ( ZZ>= ` M ) -> ( ( F ` x ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` x ) e. ( M ... N ) \/ ( F ` x ) = ( N + 1 ) ) ) ) |
|
| 293 | 291 292 | syl | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) e. ( M ... ( N + 1 ) ) <-> ( ( F ` x ) e. ( M ... N ) \/ ( F ` x ) = ( N + 1 ) ) ) ) |
| 294 | 290 293 | mpbid | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) e. ( M ... N ) \/ ( F ` x ) = ( N + 1 ) ) ) |
| 295 | 294 | ord | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( -. ( F ` x ) e. ( M ... N ) -> ( F ` x ) = ( N + 1 ) ) ) |
| 296 | 6 | ad2antrr | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) ) |
| 297 | f1ocnvfv | |- ( ( F : ( M ... ( N + 1 ) ) -1-1-onto-> ( M ... ( N + 1 ) ) /\ x e. ( M ... ( N + 1 ) ) ) -> ( ( F ` x ) = ( N + 1 ) -> ( `' F ` ( N + 1 ) ) = x ) ) |
|
| 298 | 296 289 297 | syl2anc | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) = ( N + 1 ) -> ( `' F ` ( N + 1 ) ) = x ) ) |
| 299 | 9 | eqeq1i | |- ( K = x <-> ( `' F ` ( N + 1 ) ) = x ) |
| 300 | 298 299 | imbitrrdi | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) = ( N + 1 ) -> K = x ) ) |
| 301 | 295 300 | syld | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( -. ( F ` x ) e. ( M ... N ) -> K = x ) ) |
| 302 | 301 | necon1ad | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( K =/= x -> ( F ` x ) e. ( M ... N ) ) ) |
| 303 | 286 302 | mpd | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. ( M ... N ) ) |
| 304 | 303 | fvresd | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G |` ( M ... N ) ) ` ( F ` x ) ) = ( G ` ( F ` x ) ) ) |
| 305 | 284 304 | eqtr2d | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( G ` ( F ` x ) ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
| 306 | 57 288 197 | syl2an | |- ( ( ph /\ x e. ( M ... N ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
| 307 | 306 | adantlr | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
| 308 | 128 | adantlr | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( ( G |` ( M ... N ) ) o. J ) ` x ) = ( ( G |` ( M ... N ) ) ` ( J ` x ) ) ) |
| 309 | 305 307 308 | 3eqtr4d | |- ( ( ( ph /\ K = ( N + 1 ) ) /\ x e. ( M ... N ) ) -> ( ( G o. F ) ` x ) = ( ( ( G |` ( M ... N ) ) o. J ) ` x ) ) |
| 310 | 264 309 | seqfveq | |- ( ( ph /\ K = ( N + 1 ) ) -> ( seq M ( .+ , ( G o. F ) ) ` N ) = ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) ) |
| 311 | fvco3 | |- ( ( F : ( M ... ( N + 1 ) ) --> ( M ... ( N + 1 ) ) /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( F ` ( N + 1 ) ) ) ) |
|
| 312 | 57 75 311 | syl2anc | |- ( ph -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( F ` ( N + 1 ) ) ) ) |
| 313 | 312 | adantr | |- ( ( ph /\ K = ( N + 1 ) ) -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( F ` ( N + 1 ) ) ) ) |
| 314 | simpr | |- ( ( ph /\ K = ( N + 1 ) ) -> K = ( N + 1 ) ) |
|
| 315 | 9 314 | eqtr3id | |- ( ( ph /\ K = ( N + 1 ) ) -> ( `' F ` ( N + 1 ) ) = ( N + 1 ) ) |
| 316 | 315 | fveq2d | |- ( ( ph /\ K = ( N + 1 ) ) -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( F ` ( N + 1 ) ) ) |
| 317 | 142 | adantr | |- ( ( ph /\ K = ( N + 1 ) ) -> ( F ` ( `' F ` ( N + 1 ) ) ) = ( N + 1 ) ) |
| 318 | 316 317 | eqtr3d | |- ( ( ph /\ K = ( N + 1 ) ) -> ( F ` ( N + 1 ) ) = ( N + 1 ) ) |
| 319 | 318 | fveq2d | |- ( ( ph /\ K = ( N + 1 ) ) -> ( G ` ( F ` ( N + 1 ) ) ) = ( G ` ( N + 1 ) ) ) |
| 320 | 313 319 | eqtrd | |- ( ( ph /\ K = ( N + 1 ) ) -> ( ( G o. F ) ` ( N + 1 ) ) = ( G ` ( N + 1 ) ) ) |
| 321 | 310 320 | oveq12d | |- ( ( ph /\ K = ( N + 1 ) ) -> ( ( seq M ( .+ , ( G o. F ) ) ` N ) .+ ( ( G o. F ) ` ( N + 1 ) ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 322 | 266 321 | eqtrd | |- ( ( ph /\ K = ( N + 1 ) ) -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 323 | elfzp1 | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... ( N + 1 ) ) <-> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) ) |
|
| 324 | 4 323 | syl | |- ( ph -> ( K e. ( M ... ( N + 1 ) ) <-> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) ) |
| 325 | 77 324 | mpbid | |- ( ph -> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) |
| 326 | 263 322 325 | mpjaodan | |- ( ph -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( ( seq M ( .+ , ( ( G |` ( M ... N ) ) o. J ) ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 327 | seqp1 | |- ( N e. ( ZZ>= ` M ) -> ( seq M ( .+ , G ) ` ( N + 1 ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
|
| 328 | 4 327 | syl | |- ( ph -> ( seq M ( .+ , G ) ` ( N + 1 ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` ( N + 1 ) ) ) ) |
| 329 | 47 326 328 | 3eqtr4d | |- ( ph -> ( seq M ( .+ , ( G o. F ) ) ` ( N + 1 ) ) = ( seq M ( .+ , G ) ` ( N + 1 ) ) ) |