This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| lensymd.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| Assertion | lensymd | ⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | lensymd.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | 1 2 | lenltd | ⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| 5 | 3 4 | mpbid | ⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |