This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | ||
| mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | ||
| mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | ||
| mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| mdetunilem9.id | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) = 0 ) | ||
| mdetunilem9.y | ⊢ 𝑌 = { 𝑥 ∣ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) } | ||
| Assertion | mdetunilem9 | ⊢ ( 𝜑 → 𝐷 = ( 𝐵 × { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 6 | mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | |
| 7 | mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | |
| 8 | mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 9 | mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 10 | mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | |
| 11 | mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | |
| 12 | mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 13 | mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 14 | mdetunilem9.id | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) = 0 ) | |
| 15 | mdetunilem9.y | ⊢ 𝑌 = { 𝑥 ∣ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) } | |
| 16 | ral0 | ⊢ ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) | |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) | |
| 18 | f1oi | ⊢ ( I ↾ 𝑁 ) : 𝑁 –1-1-onto→ 𝑁 | |
| 19 | f1of | ⊢ ( ( I ↾ 𝑁 ) : 𝑁 –1-1-onto→ 𝑁 → ( I ↾ 𝑁 ) : 𝑁 ⟶ 𝑁 ) | |
| 20 | 18 19 | mp1i | ⊢ ( 𝜑 → ( I ↾ 𝑁 ) : 𝑁 ⟶ 𝑁 ) |
| 21 | 8 8 | elmapd | ⊢ ( 𝜑 → ( ( I ↾ 𝑁 ) ∈ ( 𝑁 ↑m 𝑁 ) ↔ ( I ↾ 𝑁 ) : 𝑁 ⟶ 𝑁 ) ) |
| 22 | 20 21 | mpbird | ⊢ ( 𝜑 → ( I ↾ 𝑁 ) ∈ ( 𝑁 ↑m 𝑁 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( I ↾ 𝑁 ) ∈ ( 𝑁 ↑m 𝑁 ) ) |
| 24 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → 𝑦 ∈ 𝐵 ) | |
| 25 | 1 3 2 | matbas2i | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
| 26 | elmapi | ⊢ ( 𝑦 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) → 𝑦 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) | |
| 27 | 25 26 | syl | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
| 28 | 27 | feqmptd | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 = ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) |
| 29 | 28 | fveq2d | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝐷 ‘ 𝑦 ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 30 | 24 29 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝐷 ‘ 𝑦 ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 31 | eqid | ⊢ ( 𝑁 × 𝑁 ) = ( 𝑁 × 𝑁 ) | |
| 32 | mpteq12 | ⊢ ( ( ( 𝑁 × 𝑁 ) = ( 𝑁 × 𝑁 ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) = ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) | |
| 33 | 32 | fveq2d | ⊢ ( ( ( 𝑁 × 𝑁 ) = ( 𝑁 × 𝑁 ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) ) |
| 34 | 31 33 | mpan | ⊢ ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) ) |
| 35 | 34 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) ) |
| 36 | eleq1 | ⊢ ( 𝑎 = 𝑧 → ( 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ↔ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) | |
| 37 | 36 | anbi2d | ⊢ ( 𝑎 = 𝑧 → ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ) |
| 38 | elequ2 | ⊢ ( 𝑎 = 𝑧 → ( 𝑤 ∈ 𝑎 ↔ 𝑤 ∈ 𝑧 ) ) | |
| 39 | 38 | ifbid | ⊢ ( 𝑎 = 𝑧 → if ( 𝑤 ∈ 𝑎 , 1 , 0 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) |
| 40 | 39 | mpteq2dv | ⊢ ( 𝑎 = 𝑧 → ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) = ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
| 41 | 40 | fveq2d | ⊢ ( 𝑎 = 𝑧 → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) ) |
| 42 | 41 | eqeq1d | ⊢ ( 𝑎 = 𝑧 → ( ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) ) = 0 ↔ ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) = 0 ) ) |
| 43 | 37 42 | imbi12d | ⊢ ( 𝑎 = 𝑧 → ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) ) = 0 ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) = 0 ) ) ) |
| 44 | eleq1 | ⊢ ( 𝑤 = 〈 𝑏 , 𝑐 〉 → ( 𝑤 ∈ 𝑎 ↔ 〈 𝑏 , 𝑐 〉 ∈ 𝑎 ) ) | |
| 45 | 44 | ifbid | ⊢ ( 𝑤 = 〈 𝑏 , 𝑐 〉 → if ( 𝑤 ∈ 𝑎 , 1 , 0 ) = if ( 〈 𝑏 , 𝑐 〉 ∈ 𝑎 , 1 , 0 ) ) |
| 46 | 45 | mpompt | ⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) = ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( 〈 𝑏 , 𝑐 〉 ∈ 𝑎 , 1 , 0 ) ) |
| 47 | elmapi | ⊢ ( 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) → 𝑎 : 𝑁 ⟶ 𝑁 ) | |
| 48 | 47 | adantl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → 𝑎 : 𝑁 ⟶ 𝑁 ) |
| 49 | 48 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → 𝑎 Fn 𝑁 ) |
| 50 | 49 | 3ad2ant1 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → 𝑎 Fn 𝑁 ) |
| 51 | simp2 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → 𝑏 ∈ 𝑁 ) | |
| 52 | fnopfvb | ⊢ ( ( 𝑎 Fn 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑎 ‘ 𝑏 ) = 𝑐 ↔ 〈 𝑏 , 𝑐 〉 ∈ 𝑎 ) ) | |
| 53 | 50 51 52 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → ( ( 𝑎 ‘ 𝑏 ) = 𝑐 ↔ 〈 𝑏 , 𝑐 〉 ∈ 𝑎 ) ) |
| 54 | 53 | bicomd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → ( 〈 𝑏 , 𝑐 〉 ∈ 𝑎 ↔ ( 𝑎 ‘ 𝑏 ) = 𝑐 ) ) |
| 55 | 54 | ifbid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → if ( 〈 𝑏 , 𝑐 〉 ∈ 𝑎 , 1 , 0 ) = if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) |
| 56 | 55 | mpoeq3dva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( 〈 𝑏 , 𝑐 〉 ∈ 𝑎 , 1 , 0 ) ) = ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) ) |
| 57 | 46 56 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) = ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) ) |
| 58 | 57 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) ) = ( 𝐷 ‘ ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) ) ) |
| 59 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | mdetunilem8 | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝑁 ⟶ 𝑁 ) → ( 𝐷 ‘ ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) ) = 0 ) |
| 60 | 47 59 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) ) = 0 ) |
| 61 | 58 60 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) ) = 0 ) |
| 62 | 43 61 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) = 0 ) |
| 63 | 62 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) = 0 ) |
| 64 | 63 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) = 0 ) |
| 65 | 30 35 64 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝐷 ‘ 𝑦 ) = 0 ) |
| 66 | 65 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
| 67 | 66 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
| 68 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) | |
| 69 | 8 8 68 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 70 | raleq | ⊢ ( 𝑥 = ( 𝑁 × 𝑁 ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) | |
| 71 | 70 | imbi1d | ⊢ ( 𝑥 = ( 𝑁 × 𝑁 ) → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 72 | 71 | 2ralbidv | ⊢ ( 𝑥 = ( 𝑁 × 𝑁 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 73 | 72 15 | elab2g | ⊢ ( ( 𝑁 × 𝑁 ) ∈ Fin → ( ( 𝑁 × 𝑁 ) ∈ 𝑌 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 74 | 69 73 | syl | ⊢ ( 𝜑 → ( ( 𝑁 × 𝑁 ) ∈ 𝑌 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 75 | 67 74 | mpbird | ⊢ ( 𝜑 → ( 𝑁 × 𝑁 ) ∈ 𝑌 ) |
| 76 | ssid | ⊢ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) | |
| 77 | 69 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 78 | sseq1 | ⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ ( 𝑁 × 𝑁 ) ↔ ∅ ⊆ ( 𝑁 × 𝑁 ) ) ) | |
| 79 | 78 | 3anbi2d | ⊢ ( 𝑎 = ∅ → ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ↔ ( 𝜑 ∧ ∅ ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ) ) |
| 80 | eleq1 | ⊢ ( 𝑎 = ∅ → ( 𝑎 ∈ 𝑌 ↔ ∅ ∈ 𝑌 ) ) | |
| 81 | 80 | notbid | ⊢ ( 𝑎 = ∅ → ( ¬ 𝑎 ∈ 𝑌 ↔ ¬ ∅ ∈ 𝑌 ) ) |
| 82 | 79 81 | imbi12d | ⊢ ( 𝑎 = ∅ → ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑎 ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ ∅ ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ∅ ∈ 𝑌 ) ) ) |
| 83 | sseq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ ( 𝑁 × 𝑁 ) ↔ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ) ) | |
| 84 | 83 | 3anbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ↔ ( 𝜑 ∧ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ) ) |
| 85 | eleq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∈ 𝑌 ↔ 𝑏 ∈ 𝑌 ) ) | |
| 86 | 85 | notbid | ⊢ ( 𝑎 = 𝑏 → ( ¬ 𝑎 ∈ 𝑌 ↔ ¬ 𝑏 ∈ 𝑌 ) ) |
| 87 | 84 86 | imbi12d | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑎 ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑏 ∈ 𝑌 ) ) ) |
| 88 | sseq1 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ ( 𝑁 × 𝑁 ) ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) ) | |
| 89 | 88 | 3anbi2d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ↔ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ) ) |
| 90 | eleq1 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ∈ 𝑌 ↔ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) | |
| 91 | 90 | notbid | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ¬ 𝑎 ∈ 𝑌 ↔ ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) |
| 92 | 89 91 | imbi12d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑎 ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) ) |
| 93 | sseq1 | ⊢ ( 𝑎 = ( 𝑁 × 𝑁 ) → ( 𝑎 ⊆ ( 𝑁 × 𝑁 ) ↔ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ) ) | |
| 94 | 93 | 3anbi2d | ⊢ ( 𝑎 = ( 𝑁 × 𝑁 ) → ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ↔ ( 𝜑 ∧ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ) ) |
| 95 | eleq1 | ⊢ ( 𝑎 = ( 𝑁 × 𝑁 ) → ( 𝑎 ∈ 𝑌 ↔ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) | |
| 96 | 95 | notbid | ⊢ ( 𝑎 = ( 𝑁 × 𝑁 ) → ( ¬ 𝑎 ∈ 𝑌 ↔ ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) |
| 97 | 94 96 | imbi12d | ⊢ ( 𝑎 = ( 𝑁 × 𝑁 ) → ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑎 ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) ) |
| 98 | simp3 | ⊢ ( ( 𝜑 ∧ ∅ ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ∅ ∈ 𝑌 ) | |
| 99 | ssun1 | ⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) | |
| 100 | sstr2 | ⊢ ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) → 𝑏 ⊆ ( 𝑁 × 𝑁 ) ) ) | |
| 101 | 99 100 | ax-mp | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) → 𝑏 ⊆ ( 𝑁 × 𝑁 ) ) |
| 102 | 101 | 3anim2i | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ( 𝜑 ∧ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ) |
| 103 | 102 | imim1i | ⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑏 ∈ 𝑌 ) → ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑏 ∈ 𝑌 ) ) |
| 104 | simpl1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝜑 ) | |
| 105 | simpl2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) | |
| 106 | simprll | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝑎 ∈ 𝐵 ) | |
| 107 | 1 3 2 | matbas2i | ⊢ ( 𝑎 ∈ 𝐵 → 𝑎 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
| 108 | elmapi | ⊢ ( 𝑎 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) → 𝑎 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) | |
| 109 | 107 108 | syl | ⊢ ( 𝑎 ∈ 𝐵 → 𝑎 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
| 110 | 109 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑎 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
| 111 | 110 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑎 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) |
| 112 | 111 | reseq1d | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) |
| 113 | 9 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 114 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 115 | 113 114 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 116 | 115 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → 𝑅 ∈ Grp ) |
| 117 | 110 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → 𝑎 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
| 118 | simp2 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) | |
| 119 | 118 | unssbd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → { 𝑐 } ⊆ ( 𝑁 × 𝑁 ) ) |
| 120 | vex | ⊢ 𝑐 ∈ V | |
| 121 | 120 | snss | ⊢ ( 𝑐 ∈ ( 𝑁 × 𝑁 ) ↔ { 𝑐 } ⊆ ( 𝑁 × 𝑁 ) ) |
| 122 | 119 121 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑐 ∈ ( 𝑁 × 𝑁 ) ) |
| 123 | xp1st | ⊢ ( 𝑐 ∈ ( 𝑁 × 𝑁 ) → ( 1st ‘ 𝑐 ) ∈ 𝑁 ) | |
| 124 | 122 123 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 1st ‘ 𝑐 ) ∈ 𝑁 ) |
| 125 | 124 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → { ( 1st ‘ 𝑐 ) } ⊆ 𝑁 ) |
| 126 | xpss1 | ⊢ ( { ( 1st ‘ 𝑐 ) } ⊆ 𝑁 → ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ) | |
| 127 | 125 126 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ) |
| 128 | 127 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → 𝑒 ∈ ( 𝑁 × 𝑁 ) ) |
| 129 | 117 128 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 𝑎 ‘ 𝑒 ) ∈ 𝐾 ) |
| 130 | 3 5 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐾 ) |
| 131 | 113 130 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 1 ∈ 𝐾 ) |
| 132 | 3 4 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
| 133 | 113 132 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 0 ∈ 𝐾 ) |
| 134 | 131 133 | ifcld | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) |
| 135 | 134 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) |
| 136 | eqid | ⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) | |
| 137 | 3 6 136 | grpnpcan | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑎 ‘ 𝑒 ) ∈ 𝐾 ∧ if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) → ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
| 138 | 116 129 135 137 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
| 139 | 138 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 𝑎 ‘ 𝑒 ) = ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) |
| 140 | 139 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( 𝑎 ‘ 𝑒 ) = ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) |
| 141 | iftrue | ⊢ ( 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) | |
| 142 | iftrue | ⊢ ( 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) | |
| 143 | 141 142 | oveq12d | ⊢ ( 𝑒 = 𝑐 → ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) |
| 144 | 143 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) |
| 145 | 140 144 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( 𝑎 ‘ 𝑒 ) = ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
| 146 | 3 6 4 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑎 ‘ 𝑒 ) ∈ 𝐾 ) → ( 0 + ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
| 147 | 116 129 146 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 0 + ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
| 148 | 147 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 𝑎 ‘ 𝑒 ) = ( 0 + ( 𝑎 ‘ 𝑒 ) ) ) |
| 149 | 148 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → ( 𝑎 ‘ 𝑒 ) = ( 0 + ( 𝑎 ‘ 𝑒 ) ) ) |
| 150 | iffalse | ⊢ ( ¬ 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = 0 ) | |
| 151 | iffalse | ⊢ ( ¬ 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) | |
| 152 | 150 151 | oveq12d | ⊢ ( ¬ 𝑒 = 𝑐 → ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 0 + ( 𝑎 ‘ 𝑒 ) ) ) |
| 153 | 152 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 0 + ( 𝑎 ‘ 𝑒 ) ) ) |
| 154 | 149 153 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → ( 𝑎 ‘ 𝑒 ) = ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
| 155 | 145 154 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 𝑎 ‘ 𝑒 ) = ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
| 156 | 155 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
| 157 | snfi | ⊢ { ( 1st ‘ 𝑐 ) } ∈ Fin | |
| 158 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 159 | xpfi | ⊢ ( ( { ( 1st ‘ 𝑐 ) } ∈ Fin ∧ 𝑁 ∈ Fin ) → ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ∈ Fin ) | |
| 160 | 157 158 159 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ∈ Fin ) |
| 161 | ovex | ⊢ ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ∈ V | |
| 162 | 4 | fvexi | ⊢ 0 ∈ V |
| 163 | 161 162 | ifex | ⊢ if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ∈ V |
| 164 | 163 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ∈ V ) |
| 165 | 5 | fvexi | ⊢ 1 ∈ V |
| 166 | 165 162 | ifex | ⊢ if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ V |
| 167 | fvex | ⊢ ( 𝑎 ‘ 𝑒 ) ∈ V | |
| 168 | 166 167 | ifex | ⊢ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ V |
| 169 | 168 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ V ) |
| 170 | xp1st | ⊢ ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) → ( 1st ‘ 𝑒 ) ∈ { ( 1st ‘ 𝑐 ) } ) | |
| 171 | elsni | ⊢ ( ( 1st ‘ 𝑒 ) ∈ { ( 1st ‘ 𝑐 ) } → ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ) | |
| 172 | iftrue | ⊢ ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ) | |
| 173 | 170 171 172 | 3syl | ⊢ ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ) |
| 174 | 173 | mpteq2ia | ⊢ ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ) |
| 175 | 174 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ) ) |
| 176 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) | |
| 177 | 160 164 169 175 176 | offval2 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∘f + ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
| 178 | 156 177 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) = ( ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∘f + ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
| 179 | 127 | resmptd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) |
| 180 | 127 | resmptd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
| 181 | 127 | resmptd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
| 182 | 180 181 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) = ( ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∘f + ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
| 183 | 178 179 182 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) |
| 184 | 112 183 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) |
| 185 | 111 | reseq1d | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
| 186 | xp1st | ⊢ ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) → ( 1st ‘ 𝑒 ) ∈ ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) ) | |
| 187 | eldifsni | ⊢ ( ( 1st ‘ 𝑒 ) ∈ ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) → ( 1st ‘ 𝑒 ) ≠ ( 1st ‘ 𝑐 ) ) | |
| 188 | 186 187 | syl | ⊢ ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) → ( 1st ‘ 𝑒 ) ≠ ( 1st ‘ 𝑐 ) ) |
| 189 | 188 | neneqd | ⊢ ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) → ¬ ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ) |
| 190 | 189 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) → ¬ ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ) |
| 191 | 190 | iffalsed | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
| 192 | 191 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) |
| 193 | difss | ⊢ ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) ⊆ 𝑁 | |
| 194 | xpss1 | ⊢ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) ⊆ 𝑁 → ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ) | |
| 195 | 193 194 | ax-mp | ⊢ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) |
| 196 | resmpt | ⊢ ( ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) | |
| 197 | 195 196 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
| 198 | resmpt | ⊢ ( ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) | |
| 199 | 195 198 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) |
| 200 | 192 197 199 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
| 201 | 185 200 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
| 202 | fveq2 | ⊢ ( 𝑒 = 𝑐 → ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ) | |
| 203 | 190 202 | nsyl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) → ¬ 𝑒 = 𝑐 ) |
| 204 | 203 | iffalsed | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
| 205 | 204 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) |
| 206 | resmpt | ⊢ ( ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) | |
| 207 | 195 206 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
| 208 | 205 207 199 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
| 209 | 185 208 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
| 210 | 134 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) |
| 211 | 110 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → ( 𝑎 ‘ 𝑒 ) ∈ 𝐾 ) |
| 212 | 210 211 | ifcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ 𝐾 ) |
| 213 | 212 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
| 214 | 3 | fvexi | ⊢ 𝐾 ∈ V |
| 215 | 68 | anidms | ⊢ ( 𝑁 ∈ Fin → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 216 | 158 215 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 217 | elmapg | ⊢ ( ( 𝐾 ∈ V ∧ ( 𝑁 × 𝑁 ) ∈ Fin ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) | |
| 218 | 214 216 217 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
| 219 | 213 218 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
| 220 | 1 3 | matbas2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 221 | 158 113 220 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 222 | 221 2 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = 𝐵 ) |
| 223 | 219 222 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) |
| 224 | simp3 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) | |
| 225 | 115 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → 𝑅 ∈ Grp ) |
| 226 | 3 136 | grpsubcl | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑎 ‘ 𝑒 ) ∈ 𝐾 ∧ if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) → ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) |
| 227 | 225 211 210 226 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) |
| 228 | 133 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → 0 ∈ 𝐾 ) |
| 229 | 227 228 | ifcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ∈ 𝐾 ) |
| 230 | 229 211 | ifcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ 𝐾 ) |
| 231 | 230 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
| 232 | elmapg | ⊢ ( ( 𝐾 ∈ V ∧ ( 𝑁 × 𝑁 ) ∈ Fin ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) | |
| 233 | 214 216 232 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
| 234 | 231 233 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
| 235 | 234 222 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) |
| 236 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 237 | reseq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) ) | |
| 238 | 237 | eqeq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
| 239 | reseq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) | |
| 240 | 239 | eqeq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
| 241 | 239 | eqeq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
| 242 | 238 240 241 | 3anbi123d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
| 243 | fveqeq2 | ⊢ ( 𝑥 = 𝑎 → ( ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 244 | 242 243 | imbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
| 245 | 244 | 2ralbidv | ⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
| 246 | reseq1 | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) | |
| 247 | 246 | oveq1d | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) |
| 248 | 247 | eqeq2d | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
| 249 | reseq1 | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) | |
| 250 | 249 | eqeq2d | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
| 251 | 248 250 | 3anbi12d | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
| 252 | fveq2 | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝐷 ‘ 𝑦 ) = ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) | |
| 253 | 252 | oveq1d | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) |
| 254 | 253 | eqeq2d | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 255 | 251 254 | imbi12d | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
| 256 | 255 | 2ralbidv | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
| 257 | 245 256 | rspc2va | ⊢ ( ( ( 𝑎 ∈ 𝐵 ∧ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 258 | 224 235 236 257 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 259 | reseq1 | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) | |
| 260 | 259 | oveq2d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ) |
| 261 | 260 | eqeq2d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
| 262 | reseq1 | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) | |
| 263 | 262 | eqeq2d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
| 264 | 261 263 | 3anbi13d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
| 265 | fveq2 | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝐷 ‘ 𝑧 ) = ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) | |
| 266 | 265 | oveq2d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
| 267 | 266 | eqeq2d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
| 268 | 264 267 | imbi12d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) |
| 269 | sneq | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → { 𝑤 } = { ( 1st ‘ 𝑐 ) } ) | |
| 270 | 269 | xpeq1d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( { 𝑤 } × 𝑁 ) = ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) |
| 271 | 270 | reseq2d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) |
| 272 | 270 | reseq2d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) |
| 273 | 270 | reseq2d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) |
| 274 | 272 273 | oveq12d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) |
| 275 | 271 274 | eqeq12d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) ) |
| 276 | 269 | difeq2d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( 𝑁 ∖ { 𝑤 } ) = ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) ) |
| 277 | 276 | xpeq1d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) = ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) |
| 278 | 277 | reseq2d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
| 279 | 277 | reseq2d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
| 280 | 278 279 | eqeq12d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) ) |
| 281 | 277 | reseq2d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
| 282 | 278 281 | eqeq12d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) ) |
| 283 | 275 280 282 | 3anbi123d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) ) ) |
| 284 | 283 | imbi1d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ↔ ( ( ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) |
| 285 | 268 284 | rspc2va | ⊢ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ∧ ( 1st ‘ 𝑐 ) ∈ 𝑁 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) → ( ( ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
| 286 | 223 124 258 285 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
| 287 | 184 201 209 286 | mp3and | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
| 288 | 104 105 106 287 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
| 289 | fveq2 | ⊢ ( 𝑒 = 𝑐 → ( 𝑎 ‘ 𝑒 ) = ( 𝑎 ‘ 𝑐 ) ) | |
| 290 | elequ1 | ⊢ ( 𝑒 = 𝑐 → ( 𝑒 ∈ 𝑑 ↔ 𝑐 ∈ 𝑑 ) ) | |
| 291 | 290 | ifbid | ⊢ ( 𝑒 = 𝑐 → if ( 𝑒 ∈ 𝑑 , 1 , 0 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
| 292 | 289 291 | oveq12d | ⊢ ( 𝑒 = 𝑐 → ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
| 293 | 292 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
| 294 | 110 122 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ‘ 𝑐 ) ∈ 𝐾 ) |
| 295 | 131 133 | ifcld | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) |
| 296 | 3 136 | grpsubcl | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑎 ‘ 𝑐 ) ∈ 𝐾 ∧ if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) → ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) |
| 297 | 115 294 295 296 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) |
| 298 | 3 7 5 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
| 299 | 113 297 298 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
| 300 | 299 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
| 301 | 293 300 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) ) |
| 302 | 141 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) |
| 303 | iftrue | ⊢ ( 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , 1 , 0 ) = 1 ) | |
| 304 | 303 | oveq2d | ⊢ ( 𝑒 = 𝑐 → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) ) |
| 305 | 304 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) ) |
| 306 | 301 302 305 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) ) |
| 307 | 3 7 4 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) = 0 ) |
| 308 | 113 297 307 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) = 0 ) |
| 309 | 308 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 0 = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) ) |
| 310 | 309 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → 0 = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) ) |
| 311 | 150 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = 0 ) |
| 312 | iffalse | ⊢ ( ¬ 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , 1 , 0 ) = 0 ) | |
| 313 | 312 | oveq2d | ⊢ ( ¬ 𝑒 = 𝑐 → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) ) |
| 314 | 313 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) ) |
| 315 | 310 311 314 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) ) |
| 316 | 306 315 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) ) |
| 317 | 170 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 1st ‘ 𝑒 ) ∈ { ( 1st ‘ 𝑐 ) } ) |
| 318 | 317 171 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ) |
| 319 | 318 | iftrued | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ) |
| 320 | 318 | iftrued | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑒 = 𝑐 , 1 , 0 ) ) |
| 321 | 320 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) ) |
| 322 | 316 319 321 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
| 323 | 322 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
| 324 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ V ) | |
| 325 | 165 162 | ifex | ⊢ if ( 𝑒 = 𝑐 , 1 , 0 ) ∈ V |
| 326 | 325 167 | ifex | ⊢ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ V |
| 327 | 326 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ V ) |
| 328 | fconstmpt | ⊢ ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) | |
| 329 | 328 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) ) |
| 330 | 127 | resmptd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
| 331 | 160 324 327 329 330 | offval2 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
| 332 | 323 180 331 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) |
| 333 | iffalse | ⊢ ( ¬ ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) | |
| 334 | iffalse | ⊢ ( ¬ ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) | |
| 335 | 333 334 | eqtr4d | ⊢ ( ¬ ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) |
| 336 | 190 335 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) |
| 337 | 336 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
| 338 | resmpt | ⊢ ( ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) | |
| 339 | 195 338 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
| 340 | 337 197 339 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
| 341 | 131 133 | ifcld | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → if ( 𝑒 = 𝑐 , 1 , 0 ) ∈ 𝐾 ) |
| 342 | 341 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( 𝑒 = 𝑐 , 1 , 0 ) ∈ 𝐾 ) |
| 343 | 342 211 | ifcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ 𝐾 ) |
| 344 | 343 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
| 345 | elmapg | ⊢ ( ( 𝐾 ∈ V ∧ ( 𝑁 × 𝑁 ) ∈ Fin ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) | |
| 346 | 214 216 345 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
| 347 | 344 346 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
| 348 | 347 222 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) |
| 349 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 350 | reseq1 | ⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) | |
| 351 | 350 | eqeq1d | ⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
| 352 | reseq1 | ⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) | |
| 353 | 352 | eqeq1d | ⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
| 354 | 351 353 | anbi12d | ⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
| 355 | fveqeq2 | ⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 356 | 354 355 | imbi12d | ⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
| 357 | 356 | 2ralbidv | ⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
| 358 | sneq | ⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → { 𝑦 } = { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) | |
| 359 | 358 | xpeq2d | ⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) = ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ) |
| 360 | 359 | oveq1d | ⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) |
| 361 | 360 | eqeq2d | ⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
| 362 | 361 | anbi1d | ⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
| 363 | oveq1 | ⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) | |
| 364 | 363 | eqeq2d | ⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 365 | 362 364 | imbi12d | ⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
| 366 | 365 | 2ralbidv | ⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
| 367 | 357 366 | rspc2va | ⊢ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ∧ ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 368 | 235 297 349 367 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 369 | reseq1 | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) | |
| 370 | 369 | oveq2d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ) |
| 371 | 370 | eqeq2d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
| 372 | reseq1 | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) | |
| 373 | 372 | eqeq2d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
| 374 | 371 373 | anbi12d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
| 375 | fveq2 | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝐷 ‘ 𝑧 ) = ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) | |
| 376 | 375 | oveq2d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
| 377 | 376 | eqeq2d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
| 378 | 374 377 | imbi12d | ⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) |
| 379 | 270 | xpeq1d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) = ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ) |
| 380 | 270 | reseq2d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) |
| 381 | 379 380 | oveq12d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) |
| 382 | 272 381 | eqeq12d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) ) |
| 383 | 277 | reseq2d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
| 384 | 279 383 | eqeq12d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) ) |
| 385 | 382 384 | anbi12d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) ) ) |
| 386 | 385 | imbi1d | ⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ↔ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) |
| 387 | 378 386 | rspc2va | ⊢ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ∧ ( 1st ‘ 𝑐 ) ∈ 𝑁 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) → ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
| 388 | 348 124 368 387 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
| 389 | 332 340 388 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
| 390 | 389 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
| 391 | 104 105 106 390 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
| 392 | simpl3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) | |
| 393 | simprlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) | |
| 394 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) | |
| 395 | ralss | ⊢ ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) ) | |
| 396 | 99 395 | ax-mp | ⊢ ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
| 397 | iftrue | ⊢ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 = 𝑐 , 1 , 0 ) ) | |
| 398 | 397 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 = 𝑐 , 1 , 0 ) ) |
| 399 | ibar | ⊢ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ( ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ↔ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ∧ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) ) ) | |
| 400 | 399 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ↔ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ∧ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) ) ) |
| 401 | relxp | ⊢ Rel ( 𝑁 × 𝑁 ) | |
| 402 | simpl2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) | |
| 403 | 402 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → 𝑤 ∈ ( 𝑁 × 𝑁 ) ) |
| 404 | 403 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → 𝑤 ∈ ( 𝑁 × 𝑁 ) ) |
| 405 | 1st2nd | ⊢ ( ( Rel ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ ( 𝑁 × 𝑁 ) ) → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) | |
| 406 | 401 404 405 | sylancr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) |
| 407 | 406 | eleq1d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
| 408 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) | |
| 409 | elmapi | ⊢ ( 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) → 𝑑 : 𝑁 ⟶ 𝑁 ) | |
| 410 | 409 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → 𝑑 : 𝑁 ⟶ 𝑁 ) |
| 411 | 124 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 1st ‘ 𝑐 ) ∈ 𝑁 ) |
| 412 | xp2nd | ⊢ ( 𝑐 ∈ ( 𝑁 × 𝑁 ) → ( 2nd ‘ 𝑐 ) ∈ 𝑁 ) | |
| 413 | 122 412 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 2nd ‘ 𝑐 ) ∈ 𝑁 ) |
| 414 | 413 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 2nd ‘ 𝑐 ) ∈ 𝑁 ) |
| 415 | fsets | ⊢ ( ( ( 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ 𝑑 : 𝑁 ⟶ 𝑁 ) ∧ ( 1st ‘ 𝑐 ) ∈ 𝑁 ∧ ( 2nd ‘ 𝑐 ) ∈ 𝑁 ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) | |
| 416 | 408 410 411 414 415 | syl211anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) |
| 417 | 416 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) Fn 𝑁 ) |
| 418 | 417 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) Fn 𝑁 ) |
| 419 | xp1st | ⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( 1st ‘ 𝑤 ) ∈ 𝑁 ) | |
| 420 | 403 419 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ( 1st ‘ 𝑤 ) ∈ 𝑁 ) |
| 421 | 420 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 1st ‘ 𝑤 ) ∈ 𝑁 ) |
| 422 | fnopfvb | ⊢ ( ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) Fn 𝑁 ∧ ( 1st ‘ 𝑤 ) ∈ 𝑁 ) → ( ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑤 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) | |
| 423 | 418 421 422 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑤 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
| 424 | fveq2 | ⊢ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑐 ) ) ) | |
| 425 | 424 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑐 ) ) ) |
| 426 | vex | ⊢ 𝑑 ∈ V | |
| 427 | fvex | ⊢ ( 1st ‘ 𝑐 ) ∈ V | |
| 428 | fvex | ⊢ ( 2nd ‘ 𝑐 ) ∈ V | |
| 429 | fvsetsid | ⊢ ( ( 𝑑 ∈ V ∧ ( 1st ‘ 𝑐 ) ∈ V ∧ ( 2nd ‘ 𝑐 ) ∈ V ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑐 ) ) = ( 2nd ‘ 𝑐 ) ) | |
| 430 | 426 427 428 429 | mp3an | ⊢ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑐 ) ) = ( 2nd ‘ 𝑐 ) |
| 431 | 425 430 | eqtrdi | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑐 ) ) |
| 432 | 431 | eqeq1d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑤 ) ↔ ( 2nd ‘ 𝑐 ) = ( 2nd ‘ 𝑤 ) ) ) |
| 433 | eqcom | ⊢ ( ( 2nd ‘ 𝑐 ) = ( 2nd ‘ 𝑤 ) ↔ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) | |
| 434 | 432 433 | bitrdi | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑤 ) ↔ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) ) |
| 435 | 407 423 434 | 3bitr2rd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
| 436 | 122 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → 𝑐 ∈ ( 𝑁 × 𝑁 ) ) |
| 437 | xpopth | ⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ 𝑐 ∈ ( 𝑁 × 𝑁 ) ) → ( ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ∧ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) ↔ 𝑤 = 𝑐 ) ) | |
| 438 | 404 436 437 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ∧ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) ↔ 𝑤 = 𝑐 ) ) |
| 439 | 400 435 438 | 3bitr3rd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 𝑤 = 𝑐 ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
| 440 | 439 | ifbid | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( 𝑤 = 𝑐 , 1 , 0 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
| 441 | 398 440 | eqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
| 442 | 441 | a1d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 443 | elsni | ⊢ ( 𝑤 ∈ { 𝑐 } → 𝑤 = 𝑐 ) | |
| 444 | 443 | fveq2d | ⊢ ( 𝑤 ∈ { 𝑐 } → ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) |
| 445 | 444 | con3i | ⊢ ( ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ¬ 𝑤 ∈ { 𝑐 } ) |
| 446 | 445 | adantl | ⊢ ( ( 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ¬ 𝑤 ∈ { 𝑐 } ) |
| 447 | elun | ⊢ ( 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ↔ ( 𝑤 ∈ 𝑏 ∨ 𝑤 ∈ { 𝑐 } ) ) | |
| 448 | 447 | biimpi | ⊢ ( 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) → ( 𝑤 ∈ 𝑏 ∨ 𝑤 ∈ { 𝑐 } ) ) |
| 449 | 448 | adantr | ⊢ ( ( 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 𝑤 ∈ 𝑏 ∨ 𝑤 ∈ { 𝑐 } ) ) |
| 450 | orel2 | ⊢ ( ¬ 𝑤 ∈ { 𝑐 } → ( ( 𝑤 ∈ 𝑏 ∨ 𝑤 ∈ { 𝑐 } ) → 𝑤 ∈ 𝑏 ) ) | |
| 451 | 446 449 450 | sylc | ⊢ ( ( 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → 𝑤 ∈ 𝑏 ) |
| 452 | 451 | adantll | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → 𝑤 ∈ 𝑏 ) |
| 453 | iffalse | ⊢ ( ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) | |
| 454 | 453 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
| 455 | setsres | ⊢ ( 𝑑 ∈ V → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) = ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ) | |
| 456 | 455 | eleq2d | ⊢ ( 𝑑 ∈ V → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ) ) |
| 457 | 426 456 | mp1i | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ) ) |
| 458 | fvex | ⊢ ( 1st ‘ 𝑤 ) ∈ V | |
| 459 | 458 | a1i | ⊢ ( ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ( 1st ‘ 𝑤 ) ∈ V ) |
| 460 | neqne | ⊢ ( ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ( 1st ‘ 𝑤 ) ≠ ( 1st ‘ 𝑐 ) ) | |
| 461 | eldifsn | ⊢ ( ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ↔ ( ( 1st ‘ 𝑤 ) ∈ V ∧ ( 1st ‘ 𝑤 ) ≠ ( 1st ‘ 𝑐 ) ) ) | |
| 462 | 459 460 461 | sylanbrc | ⊢ ( ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) |
| 463 | fvex | ⊢ ( 2nd ‘ 𝑤 ) ∈ V | |
| 464 | 463 | opres | ⊢ ( ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
| 465 | 464 | adantl | ⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
| 466 | 1st2nd2 | ⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) | |
| 467 | 466 | eleq1d | ⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
| 468 | 467 | adantr | ⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
| 469 | 465 468 | bitr4d | ⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
| 470 | 403 462 469 | syl2an | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
| 471 | 463 | opres | ⊢ ( ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑑 ) ) |
| 472 | 471 | adantl | ⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑑 ) ) |
| 473 | 466 | eleq1d | ⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( 𝑤 ∈ 𝑑 ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑑 ) ) |
| 474 | 473 | adantr | ⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 𝑤 ∈ 𝑑 ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑑 ) ) |
| 475 | 472 474 | bitr4d | ⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 𝑤 ∈ 𝑑 ) ) |
| 476 | 403 462 475 | syl2an | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 𝑤 ∈ 𝑑 ) ) |
| 477 | 457 470 476 | 3bitr3rd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 𝑤 ∈ 𝑑 ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
| 478 | 477 | ifbid | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( 𝑤 ∈ 𝑑 , 1 , 0 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
| 479 | 454 478 | eqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
| 480 | ifeq2 | ⊢ ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) | |
| 481 | 480 | eqeq1d | ⊢ ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ↔ if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 482 | 479 481 | syl5ibrcom | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 483 | 452 482 | embantd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 484 | 442 483 | pm2.61dan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ( ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 485 | fveqeq2 | ⊢ ( 𝑒 = 𝑤 → ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ↔ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) ) | |
| 486 | equequ1 | ⊢ ( 𝑒 = 𝑤 → ( 𝑒 = 𝑐 ↔ 𝑤 = 𝑐 ) ) | |
| 487 | 486 | ifbid | ⊢ ( 𝑒 = 𝑤 → if ( 𝑒 = 𝑐 , 1 , 0 ) = if ( 𝑤 = 𝑐 , 1 , 0 ) ) |
| 488 | fveq2 | ⊢ ( 𝑒 = 𝑤 → ( 𝑎 ‘ 𝑒 ) = ( 𝑎 ‘ 𝑤 ) ) | |
| 489 | 485 487 488 | ifbieq12d | ⊢ ( 𝑒 = 𝑤 → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ) |
| 490 | eqid | ⊢ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) | |
| 491 | 165 162 | ifex | ⊢ if ( 𝑤 = 𝑐 , 1 , 0 ) ∈ V |
| 492 | fvex | ⊢ ( 𝑎 ‘ 𝑤 ) ∈ V | |
| 493 | 491 492 | ifex | ⊢ if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ∈ V |
| 494 | 489 490 493 | fvmpt | ⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ) |
| 495 | 494 | eqeq1d | ⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ↔ if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 496 | 403 495 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ↔ if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 497 | 484 496 | sylibrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ( ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 498 | 497 | ralimdva | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 499 | 396 498 | biimtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 500 | 499 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
| 501 | 500 | 3adantr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
| 502 | 348 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) |
| 503 | simpr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) | |
| 504 | 503 409 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝑑 : 𝑁 ⟶ 𝑁 ) |
| 505 | 124 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 1st ‘ 𝑐 ) ∈ 𝑁 ) |
| 506 | 413 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 2nd ‘ 𝑐 ) ∈ 𝑁 ) |
| 507 | 503 504 505 506 415 | syl211anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) |
| 508 | 158 158 | elmapd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ∈ ( 𝑁 ↑m 𝑁 ) ↔ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) ) |
| 509 | 508 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ∈ ( 𝑁 ↑m 𝑁 ) ↔ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) ) |
| 510 | 507 509 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ∈ ( 𝑁 ↑m 𝑁 ) ) |
| 511 | simpr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) | |
| 512 | raleq | ⊢ ( 𝑥 = ( 𝑏 ∪ { 𝑐 } ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) | |
| 513 | 512 | imbi1d | ⊢ ( 𝑥 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 514 | 513 | 2ralbidv | ⊢ ( 𝑥 = ( 𝑏 ∪ { 𝑐 } ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 515 | 514 15 | elab2g | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 → ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 516 | 515 | ibi | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
| 517 | 511 516 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
| 518 | fveq1 | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑦 ‘ 𝑤 ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) ) | |
| 519 | 518 | eqeq1d | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
| 520 | 519 | ralbidv | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
| 521 | fveqeq2 | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑦 ) = 0 ↔ ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) | |
| 522 | 520 521 | imbi12d | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) ) |
| 523 | eleq2 | ⊢ ( 𝑧 = ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) | |
| 524 | 523 | ifbid | ⊢ ( 𝑧 = ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) → if ( 𝑤 ∈ 𝑧 , 1 , 0 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
| 525 | 524 | eqeq2d | ⊢ ( 𝑧 = ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 526 | 525 | ralbidv | ⊢ ( 𝑧 = ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
| 527 | 526 | imbi1d | ⊢ ( 𝑧 = ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) → ( ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) ) |
| 528 | 522 527 | rspc2va | ⊢ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ∧ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) |
| 529 | 502 510 517 528 | syl21anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) |
| 530 | 501 529 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) |
| 531 | 530 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) ) |
| 532 | 118 | unssad | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑏 ⊆ ( 𝑁 × 𝑁 ) ) |
| 533 | 532 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝑏 ⊆ ( 𝑁 × 𝑁 ) ) |
| 534 | simpr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) | |
| 535 | ssel2 | ⊢ ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) → 𝑤 ∈ ( 𝑁 × 𝑁 ) ) | |
| 536 | 535 | adantr | ⊢ ( ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) ∧ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → 𝑤 ∈ ( 𝑁 × 𝑁 ) ) |
| 537 | elequ1 | ⊢ ( 𝑒 = 𝑤 → ( 𝑒 ∈ 𝑑 ↔ 𝑤 ∈ 𝑑 ) ) | |
| 538 | 537 | ifbid | ⊢ ( 𝑒 = 𝑤 → if ( 𝑒 ∈ 𝑑 , 1 , 0 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
| 539 | 486 538 488 | ifbieq12d | ⊢ ( 𝑒 = 𝑤 → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ) |
| 540 | eqid | ⊢ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) | |
| 541 | 165 162 | ifex | ⊢ if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ∈ V |
| 542 | 541 492 | ifex | ⊢ if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ∈ V |
| 543 | 539 540 542 | fvmpt | ⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ) |
| 544 | 536 543 | syl | ⊢ ( ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) ∧ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ) |
| 545 | ifeq2 | ⊢ ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) | |
| 546 | 545 | adantl | ⊢ ( ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) ∧ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
| 547 | ifid | ⊢ if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) | |
| 548 | 546 547 | eqtrdi | ⊢ ( ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) ∧ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
| 549 | 544 548 | eqtrd | ⊢ ( ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) ∧ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
| 550 | 549 | ex | ⊢ ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) → ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
| 551 | 550 | ralimdva | ⊢ ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) → ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ∀ 𝑤 ∈ 𝑏 ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
| 552 | 533 534 551 | sylc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ 𝑏 ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
| 553 | 142 291 | eqtrd | ⊢ ( 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
| 554 | 165 162 | ifex | ⊢ if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ∈ V |
| 555 | 553 540 554 | fvmpt | ⊢ ( 𝑐 ∈ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
| 556 | 122 555 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
| 557 | 556 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
| 558 | fveq2 | ⊢ ( 𝑤 = 𝑐 → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) ) | |
| 559 | elequ1 | ⊢ ( 𝑤 = 𝑐 → ( 𝑤 ∈ 𝑑 ↔ 𝑐 ∈ 𝑑 ) ) | |
| 560 | 559 | ifbid | ⊢ ( 𝑤 = 𝑐 → if ( 𝑤 ∈ 𝑑 , 1 , 0 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
| 561 | 558 560 | eqeq12d | ⊢ ( 𝑤 = 𝑐 → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
| 562 | 561 | ralunsn | ⊢ ( 𝑐 ∈ V → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ( ∀ 𝑤 ∈ 𝑏 ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) ) |
| 563 | 562 | elv | ⊢ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ( ∀ 𝑤 ∈ 𝑏 ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
| 564 | 552 557 563 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
| 565 | 223 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) |
| 566 | fveq1 | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑦 ‘ 𝑤 ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) ) | |
| 567 | 566 | eqeq1d | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
| 568 | 567 | ralbidv | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
| 569 | fveqeq2 | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑦 ) = 0 ↔ ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) | |
| 570 | 568 569 | imbi12d | ⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) ) |
| 571 | elequ2 | ⊢ ( 𝑧 = 𝑑 → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑑 ) ) | |
| 572 | 571 | ifbid | ⊢ ( 𝑧 = 𝑑 → if ( 𝑤 ∈ 𝑧 , 1 , 0 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
| 573 | 572 | eqeq2d | ⊢ ( 𝑧 = 𝑑 → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
| 574 | 573 | ralbidv | ⊢ ( 𝑧 = 𝑑 → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
| 575 | 574 | imbi1d | ⊢ ( 𝑧 = 𝑑 → ( ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) ) |
| 576 | 570 575 | rspc2va | ⊢ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) |
| 577 | 565 503 517 576 | syl21anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) |
| 578 | 564 577 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) |
| 579 | 531 578 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) + 0 ) ) |
| 580 | 308 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) + 0 ) = ( 0 + 0 ) ) |
| 581 | 3 6 4 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ 0 ∈ 𝐾 ) → ( 0 + 0 ) = 0 ) |
| 582 | 115 133 581 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 0 + 0 ) = 0 ) |
| 583 | 580 582 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) + 0 ) = 0 ) |
| 584 | 583 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) + 0 ) = 0 ) |
| 585 | 579 584 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = 0 ) |
| 586 | 104 105 106 392 393 394 585 | syl33anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = 0 ) |
| 587 | 288 391 586 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝐷 ‘ 𝑎 ) = 0 ) |
| 588 | 587 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ) → ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) |
| 589 | 588 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) |
| 590 | fveq1 | ⊢ ( 𝑎 = 𝑦 → ( 𝑎 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) | |
| 591 | 590 | eqeq1d | ⊢ ( 𝑎 = 𝑦 → ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
| 592 | 591 | ralbidv | ⊢ ( 𝑎 = 𝑦 → ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
| 593 | fveqeq2 | ⊢ ( 𝑎 = 𝑦 → ( ( 𝐷 ‘ 𝑎 ) = 0 ↔ ( 𝐷 ‘ 𝑦 ) = 0 ) ) | |
| 594 | 592 593 | imbi12d | ⊢ ( 𝑎 = 𝑦 → ( ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ↔ ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 595 | elequ2 | ⊢ ( 𝑑 = 𝑧 → ( 𝑤 ∈ 𝑑 ↔ 𝑤 ∈ 𝑧 ) ) | |
| 596 | 595 | ifbid | ⊢ ( 𝑑 = 𝑧 → if ( 𝑤 ∈ 𝑑 , 1 , 0 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) |
| 597 | 596 | eqeq2d | ⊢ ( 𝑑 = 𝑧 → ( ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
| 598 | 597 | ralbidv | ⊢ ( 𝑑 = 𝑧 → ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
| 599 | 598 | imbi1d | ⊢ ( 𝑑 = 𝑧 → ( ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 600 | 594 599 | cbvral2vw | ⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
| 601 | 589 600 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
| 602 | vex | ⊢ 𝑏 ∈ V | |
| 603 | raleq | ⊢ ( 𝑥 = 𝑏 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) | |
| 604 | 603 | imbi1d | ⊢ ( 𝑥 = 𝑏 → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 605 | 604 | 2ralbidv | ⊢ ( 𝑥 = 𝑏 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 606 | 602 605 15 | elab2 | ⊢ ( 𝑏 ∈ 𝑌 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
| 607 | 601 606 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) → 𝑏 ∈ 𝑌 ) |
| 608 | 607 | 3expia | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 → 𝑏 ∈ 𝑌 ) ) |
| 609 | 608 | con3d | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) → ( ¬ 𝑏 ∈ 𝑌 → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) |
| 610 | 609 | 3adant3 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ( ¬ 𝑏 ∈ 𝑌 → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) |
| 611 | 610 | a1i | ⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ( ¬ 𝑏 ∈ 𝑌 → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) ) |
| 612 | 611 | a2d | ⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑏 ∈ 𝑌 ) → ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) ) |
| 613 | 103 612 | syl5 | ⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( 𝜑 ∧ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑏 ∈ 𝑌 ) → ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) ) |
| 614 | 82 87 92 97 98 613 | findcard2s | ⊢ ( ( 𝑁 × 𝑁 ) ∈ Fin → ( ( 𝜑 ∧ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) |
| 615 | 77 614 | mpcom | ⊢ ( ( 𝜑 ∧ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) |
| 616 | 615 | 3exp | ⊢ ( 𝜑 → ( ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) → ( ¬ ∅ ∈ 𝑌 → ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) ) |
| 617 | 76 616 | mpi | ⊢ ( 𝜑 → ( ¬ ∅ ∈ 𝑌 → ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) |
| 618 | 75 617 | mt4d | ⊢ ( 𝜑 → ∅ ∈ 𝑌 ) |
| 619 | 618 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ∅ ∈ 𝑌 ) |
| 620 | 0ex | ⊢ ∅ ∈ V | |
| 621 | raleq | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) | |
| 622 | 621 | imbi1d | ⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 623 | 622 | 2ralbidv | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
| 624 | 620 623 15 | elab2 | ⊢ ( ∅ ∈ 𝑌 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
| 625 | 619 624 | sylib | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
| 626 | fveq1 | ⊢ ( 𝑦 = 𝑎 → ( 𝑦 ‘ 𝑤 ) = ( 𝑎 ‘ 𝑤 ) ) | |
| 627 | 626 | eqeq1d | ⊢ ( 𝑦 = 𝑎 → ( ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
| 628 | 627 | ralbidv | ⊢ ( 𝑦 = 𝑎 → ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
| 629 | fveqeq2 | ⊢ ( 𝑦 = 𝑎 → ( ( 𝐷 ‘ 𝑦 ) = 0 ↔ ( 𝐷 ‘ 𝑎 ) = 0 ) ) | |
| 630 | 628 629 | imbi12d | ⊢ ( 𝑦 = 𝑎 → ( ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) ) |
| 631 | eleq2 | ⊢ ( 𝑧 = ( I ↾ 𝑁 ) → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ ( I ↾ 𝑁 ) ) ) | |
| 632 | 631 | ifbid | ⊢ ( 𝑧 = ( I ↾ 𝑁 ) → if ( 𝑤 ∈ 𝑧 , 1 , 0 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) ) |
| 633 | 632 | eqeq2d | ⊢ ( 𝑧 = ( I ↾ 𝑁 ) → ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) ) ) |
| 634 | 633 | ralbidv | ⊢ ( 𝑧 = ( I ↾ 𝑁 ) → ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) ) ) |
| 635 | 634 | imbi1d | ⊢ ( 𝑧 = ( I ↾ 𝑁 ) → ( ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) ) |
| 636 | 630 635 | rspc2va | ⊢ ( ( ( 𝑎 ∈ 𝐵 ∧ ( I ↾ 𝑁 ) ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) → ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) |
| 637 | 17 23 625 636 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) |
| 638 | 16 637 | mpi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) |
| 639 | 638 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 ↦ ( 𝐷 ‘ 𝑎 ) ) = ( 𝑎 ∈ 𝐵 ↦ 0 ) ) |
| 640 | 10 | feqmptd | ⊢ ( 𝜑 → 𝐷 = ( 𝑎 ∈ 𝐵 ↦ ( 𝐷 ‘ 𝑎 ) ) ) |
| 641 | fconstmpt | ⊢ ( 𝐵 × { 0 } ) = ( 𝑎 ∈ 𝐵 ↦ 0 ) | |
| 642 | 641 | a1i | ⊢ ( 𝜑 → ( 𝐵 × { 0 } ) = ( 𝑎 ∈ 𝐵 ↦ 0 ) ) |
| 643 | 639 640 642 | 3eqtr4d | ⊢ ( 𝜑 → 𝐷 = ( 𝐵 × { 0 } ) ) |