This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction ( npcan analog). (Contributed by NM, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | grpnpcan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 − 𝑌 ) + 𝑌 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 5 | 1 4 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 7 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 8 | 6 7 | syld3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 9 | 1 2 4 3 | grpsubval | ⊢ ( ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) ) |
| 10 | 8 6 9 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) ) |
| 11 | 1 2 3 | grppncan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑋 ) |
| 12 | 6 11 | syld3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑋 ) |
| 13 | 1 2 4 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 15 | 14 | eqcomd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( 𝑋 − 𝑌 ) ) |
| 16 | 1 4 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑌 ) |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑌 ) |
| 18 | 15 17 | oveq12d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) = ( ( 𝑋 − 𝑌 ) + 𝑌 ) ) |
| 19 | 10 12 18 | 3eqtr3rd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 − 𝑌 ) + 𝑌 ) = 𝑋 ) |