This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011) Avoid ax-12 . (Revised by TM, 10-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oi | ⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresi | ⊢ ( I ↾ 𝐴 ) Fn 𝐴 | |
| 2 | funi | ⊢ Fun I | |
| 3 | cnvi | ⊢ ◡ I = I | |
| 4 | 3 | funeqi | ⊢ ( Fun ◡ I ↔ Fun I ) |
| 5 | 2 4 | mpbir | ⊢ Fun ◡ I |
| 6 | funres11 | ⊢ ( Fun ◡ I → Fun ◡ ( I ↾ 𝐴 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ Fun ◡ ( I ↾ 𝐴 ) |
| 8 | rnresi | ⊢ ran ( I ↾ 𝐴 ) = 𝐴 | |
| 9 | dff1o2 | ⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 ↔ ( ( I ↾ 𝐴 ) Fn 𝐴 ∧ Fun ◡ ( I ↾ 𝐴 ) ∧ ran ( I ↾ 𝐴 ) = 𝐴 ) ) | |
| 10 | 1 7 8 9 | mpbir3an | ⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 |