This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem f1oi

Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011) Avoid ax-12 . (Revised by TM, 10-Feb-2026)

Ref Expression
Assertion f1oi ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴

Proof

Step Hyp Ref Expression
1 fnresi ( I ↾ 𝐴 ) Fn 𝐴
2 funi Fun I
3 cnvi I = I
4 3 funeqi ( Fun I ↔ Fun I )
5 2 4 mpbir Fun I
6 funres11 ( Fun I → Fun ( I ↾ 𝐴 ) )
7 5 6 ax-mp Fun ( I ↾ 𝐴 )
8 rnresi ran ( I ↾ 𝐴 ) = 𝐴
9 dff1o2 ( ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴 ↔ ( ( I ↾ 𝐴 ) Fn 𝐴 ∧ Fun ( I ↾ 𝐴 ) ∧ ran ( I ↾ 𝐴 ) = 𝐴 ) )
10 1 7 8 9 mpbir3an ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴