This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opres.1 | ⊢ 𝐵 ∈ V | |
| Assertion | opres | ⊢ ( 𝐴 ∈ 𝐷 → ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 ↾ 𝐷 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opres.1 | ⊢ 𝐵 ∈ V | |
| 2 | 1 | opelresi | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 ↾ 𝐷 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 〈 𝐴 , 𝐵 〉 ∈ 𝐶 ) ) |
| 3 | 2 | baib | ⊢ ( 𝐴 ∈ 𝐷 → ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 ↾ 𝐷 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐶 ) ) |