This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a group. (Contributed by NM, 15-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | 1 2 3 4 | isring | ⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Grp ∧ ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) ) |
| 6 | 5 | simp1bi | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |