This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elab2g.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| elab2g.2 | ⊢ 𝐵 = { 𝑥 ∣ 𝜑 } | ||
| Assertion | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elab2g.2 | ⊢ 𝐵 = { 𝑥 ∣ 𝜑 } | |
| 3 | 2 | eleq2i | ⊢ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) |
| 4 | 1 | elabg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| 5 | 3 4 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ 𝜓 ) ) |