This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of findcard2 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | findcard2s.1 | ⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) | |
| findcard2s.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| findcard2s.3 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| findcard2s.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | ||
| findcard2s.5 | ⊢ 𝜓 | ||
| findcard2s.6 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | findcard2s | ⊢ ( 𝐴 ∈ Fin → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard2s.1 | ⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | findcard2s.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | findcard2s.3 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | findcard2s.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | findcard2s.5 | ⊢ 𝜓 | |
| 6 | findcard2s.6 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝜒 → 𝜃 ) ) | |
| 7 | 6 | ex | ⊢ ( 𝑦 ∈ Fin → ( ¬ 𝑧 ∈ 𝑦 → ( 𝜒 → 𝜃 ) ) ) |
| 8 | snssi | ⊢ ( 𝑧 ∈ 𝑦 → { 𝑧 } ⊆ 𝑦 ) | |
| 9 | ssequn1 | ⊢ ( { 𝑧 } ⊆ 𝑦 ↔ ( { 𝑧 } ∪ 𝑦 ) = 𝑦 ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝑧 ∈ 𝑦 → ( { 𝑧 } ∪ 𝑦 ) = 𝑦 ) |
| 11 | uncom | ⊢ ( { 𝑧 } ∪ 𝑦 ) = ( 𝑦 ∪ { 𝑧 } ) | |
| 12 | 10 11 | eqtr3di | ⊢ ( 𝑧 ∈ 𝑦 → 𝑦 = ( 𝑦 ∪ { 𝑧 } ) ) |
| 13 | vex | ⊢ 𝑦 ∈ V | |
| 14 | 13 | eqvinc | ⊢ ( 𝑦 = ( 𝑦 ∪ { 𝑧 } ) ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 = ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 15 | 12 14 | sylib | ⊢ ( 𝑧 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 = ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 16 | 2 | bicomd | ⊢ ( 𝑥 = 𝑦 → ( 𝜒 ↔ 𝜑 ) ) |
| 17 | 16 3 | sylan9bb | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑥 = ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝜒 ↔ 𝜃 ) ) |
| 18 | 17 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 = ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝜒 ↔ 𝜃 ) ) |
| 19 | 15 18 | syl | ⊢ ( 𝑧 ∈ 𝑦 → ( 𝜒 ↔ 𝜃 ) ) |
| 20 | 19 | biimpd | ⊢ ( 𝑧 ∈ 𝑦 → ( 𝜒 → 𝜃 ) ) |
| 21 | 7 20 | pm2.61d2 | ⊢ ( 𝑦 ∈ Fin → ( 𝜒 → 𝜃 ) ) |
| 22 | 1 2 3 4 5 21 | findcard2 | ⊢ ( 𝐴 ∈ Fin → 𝜏 ) |