This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpteq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 | ⊢ ( 𝐴 = 𝐶 → ∀ 𝑥 𝐴 = 𝐶 ) | |
| 2 | mpteq12f | ⊢ ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) |