This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Slightly more general equality inference for the maps-to notation. (Contributed by NM, 17-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpoeq3dva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 = 𝐷 ) | |
| Assertion | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3dva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 = 𝐷 ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 = 𝐷 ) |
| 3 | 2 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 = 𝐶 ↔ 𝑧 = 𝐷 ) ) |
| 4 | 3 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐷 ) ) ) |
| 5 | 4 | oprabbidv | ⊢ ( 𝜑 → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐷 ) } ) |
| 6 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } | |
| 7 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐷 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐷 ) } | |
| 8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) |