This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3anbi12d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3anbi12d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) | ||
| Assertion | 3anbi13d | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜂 ∧ 𝜃 ) ↔ ( 𝜒 ∧ 𝜂 ∧ 𝜏 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 3anbi12d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) | |
| 3 | biidd | ⊢ ( 𝜑 → ( 𝜂 ↔ 𝜂 ) ) | |
| 4 | 1 3 2 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜂 ∧ 𝜃 ) ↔ ( 𝜒 ∧ 𝜂 ∧ 𝜏 ) ) ) |