This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | ||
| mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | ||
| mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | ||
| mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| mdetunilem8.id | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) = 0 ) | ||
| Assertion | mdetunilem8 | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 6 | mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | |
| 7 | mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | |
| 8 | mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 9 | mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 10 | mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | |
| 11 | mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | |
| 12 | mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 13 | mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 14 | mdetunilem8.id | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) = 0 ) | |
| 15 | simpl | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → 𝜑 ) | |
| 16 | enrefg | ⊢ ( 𝑁 ∈ Fin → 𝑁 ≈ 𝑁 ) | |
| 17 | 8 16 | syl | ⊢ ( 𝜑 → 𝑁 ≈ 𝑁 ) |
| 18 | f1finf1o | ⊢ ( ( 𝑁 ≈ 𝑁 ∧ 𝑁 ∈ Fin ) → ( 𝐸 : 𝑁 –1-1→ 𝑁 ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) | |
| 19 | 17 8 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐸 : 𝑁 –1-1→ 𝑁 ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) |
| 20 | 19 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) |
| 21 | 1 | matring | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 22 | 8 9 21 | syl2anc | ⊢ ( 𝜑 → 𝐴 ∈ Ring ) |
| 23 | eqid | ⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) | |
| 24 | 2 23 | ringidcl | ⊢ ( 𝐴 ∈ Ring → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
| 25 | 22 24 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
| 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | mdetunilem7 | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 1r ‘ 𝐴 ) ∈ 𝐵 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( 𝐸 ‘ 𝑎 ) ( 1r ‘ 𝐴 ) 𝑏 ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) ) |
| 28 | 15 20 26 27 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( 𝐸 ‘ 𝑎 ) ( 1r ‘ 𝐴 ) 𝑏 ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) ) |
| 29 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → 𝑁 ∈ Fin ) |
| 30 | 29 | 3ad2ant1 | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
| 31 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → 𝑅 ∈ Ring ) |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 33 | simp1r | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐸 : 𝑁 –1-1→ 𝑁 ) | |
| 34 | f1f | ⊢ ( 𝐸 : 𝑁 –1-1→ 𝑁 → 𝐸 : 𝑁 ⟶ 𝑁 ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐸 : 𝑁 ⟶ 𝑁 ) |
| 36 | simp2 | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ∈ 𝑁 ) | |
| 37 | 35 36 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐸 ‘ 𝑎 ) ∈ 𝑁 ) |
| 38 | simp3 | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑏 ∈ 𝑁 ) | |
| 39 | 1 5 4 30 32 37 38 23 | mat1ov | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝐸 ‘ 𝑎 ) ( 1r ‘ 𝐴 ) 𝑏 ) = if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) |
| 40 | 39 | mpoeq3dva | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( 𝐸 ‘ 𝑎 ) ( 1r ‘ 𝐴 ) 𝑏 ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) |
| 41 | 40 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( 𝐸 ‘ 𝑎 ) ( 1r ‘ 𝐴 ) 𝑏 ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) |
| 42 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) = 0 ) |
| 43 | 42 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · 0 ) ) |
| 44 | zrhpsgnmhm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) | |
| 45 | 9 8 44 | syl2anc | ⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
| 46 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 47 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 48 | 47 3 | mgpbas | ⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 49 | 46 48 | mhmf | ⊢ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ 𝐾 ) |
| 50 | 45 49 | syl | ⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ 𝐾 ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ 𝐾 ) |
| 52 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 53 | 52 46 | elsymgbas | ⊢ ( 𝑁 ∈ Fin → ( 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) |
| 54 | 29 53 | syl | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) |
| 55 | 20 54 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) |
| 56 | 51 55 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) ∈ 𝐾 ) |
| 57 | 3 7 4 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) ∈ 𝐾 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · 0 ) = 0 ) |
| 58 | 31 56 57 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · 0 ) = 0 ) |
| 59 | 43 58 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) = 0 ) |
| 60 | 28 41 59 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) |
| 61 | 60 | ex | ⊢ ( 𝜑 → ( 𝐸 : 𝑁 –1-1→ 𝑁 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) ) |
| 62 | 61 | adantr | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( 𝐸 : 𝑁 –1-1→ 𝑁 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) ) |
| 63 | dff13 | ⊢ ( 𝐸 : 𝑁 –1-1→ 𝑁 ↔ ( 𝐸 : 𝑁 ⟶ 𝑁 ∧ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) ) | |
| 64 | ibar | ⊢ ( 𝐸 : 𝑁 ⟶ 𝑁 → ( ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ( 𝐸 : 𝑁 ⟶ 𝑁 ∧ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) ) ) | |
| 65 | 64 | adantl | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ( 𝐸 : 𝑁 ⟶ 𝑁 ∧ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) ) ) |
| 66 | 63 65 | bitr4id | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( 𝐸 : 𝑁 –1-1→ 𝑁 ↔ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) ) |
| 67 | 66 | notbid | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( ¬ 𝐸 : 𝑁 –1-1→ 𝑁 ↔ ¬ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) ) |
| 68 | rexnal | ⊢ ( ∃ 𝑐 ∈ 𝑁 ¬ ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ¬ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) | |
| 69 | rexnal | ⊢ ( ∃ 𝑑 ∈ 𝑁 ¬ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ¬ ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) | |
| 70 | df-ne | ⊢ ( 𝑐 ≠ 𝑑 ↔ ¬ 𝑐 = 𝑑 ) | |
| 71 | 70 | anbi2i | ⊢ ( ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ↔ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ ¬ 𝑐 = 𝑑 ) ) |
| 72 | annim | ⊢ ( ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ ¬ 𝑐 = 𝑑 ) ↔ ¬ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) | |
| 73 | 71 72 | bitr2i | ⊢ ( ¬ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) |
| 74 | 73 | rexbii | ⊢ ( ∃ 𝑑 ∈ 𝑁 ¬ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) |
| 75 | 69 74 | bitr3i | ⊢ ( ¬ ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) |
| 76 | 75 | rexbii | ⊢ ( ∃ 𝑐 ∈ 𝑁 ¬ ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ∃ 𝑐 ∈ 𝑁 ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) |
| 77 | 68 76 | bitr3i | ⊢ ( ¬ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ∃ 𝑐 ∈ 𝑁 ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) |
| 78 | 67 77 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( ¬ 𝐸 : 𝑁 –1-1→ 𝑁 ↔ ∃ 𝑐 ∈ 𝑁 ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) |
| 79 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ) | |
| 80 | fveqeq2 | ⊢ ( 𝑎 = 𝑐 → ( ( 𝐸 ‘ 𝑎 ) = 𝑏 ↔ ( 𝐸 ‘ 𝑐 ) = 𝑏 ) ) | |
| 81 | 80 | ifbid | ⊢ ( 𝑎 = 𝑐 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) ) |
| 82 | iftrue | ⊢ ( 𝑎 = 𝑐 → if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) ) | |
| 83 | 81 82 | eqtr4d | ⊢ ( 𝑎 = 𝑐 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) |
| 84 | fveqeq2 | ⊢ ( 𝑎 = 𝑑 → ( ( 𝐸 ‘ 𝑎 ) = 𝑏 ↔ ( 𝐸 ‘ 𝑑 ) = 𝑏 ) ) | |
| 85 | 84 | ifbid | ⊢ ( 𝑎 = 𝑑 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) ) |
| 86 | iftrue | ⊢ ( 𝑎 = 𝑑 → if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) = if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) ) | |
| 87 | 85 86 | eqtr4d | ⊢ ( 𝑎 = 𝑑 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) |
| 88 | iffalse | ⊢ ( ¬ 𝑎 = 𝑑 → if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) = if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) | |
| 89 | 88 | eqcomd | ⊢ ( ¬ 𝑎 = 𝑑 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) |
| 90 | 87 89 | pm2.61i | ⊢ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) |
| 91 | iffalse | ⊢ ( ¬ 𝑎 = 𝑐 → if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) | |
| 92 | 90 91 | eqtr4id | ⊢ ( ¬ 𝑎 = 𝑐 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) |
| 93 | 83 92 | pm2.61i | ⊢ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) |
| 94 | eqeq1 | ⊢ ( ( 𝐸 ‘ 𝑑 ) = ( 𝐸 ‘ 𝑐 ) → ( ( 𝐸 ‘ 𝑑 ) = 𝑏 ↔ ( 𝐸 ‘ 𝑐 ) = 𝑏 ) ) | |
| 95 | 94 | eqcoms | ⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → ( ( 𝐸 ‘ 𝑑 ) = 𝑏 ↔ ( 𝐸 ‘ 𝑐 ) = 𝑏 ) ) |
| 96 | 95 | ifbid | ⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) = if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) ) |
| 97 | 96 | ifeq1d | ⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) = if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) |
| 98 | 97 | ifeq2d | ⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) |
| 99 | 93 98 | eqtrid | ⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) |
| 100 | 99 | mpoeq3dv | ⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) ) |
| 101 | 100 | fveq2d | ⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) ) ) |
| 102 | 79 101 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) ) ) |
| 103 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝜑 ) | |
| 104 | simprll | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝑐 ∈ 𝑁 ) | |
| 105 | simprlr | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝑑 ∈ 𝑁 ) | |
| 106 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝑐 ≠ 𝑑 ) | |
| 107 | 104 105 106 | 3jca | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ∧ 𝑐 ≠ 𝑑 ) ) |
| 108 | 3 5 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐾 ) |
| 109 | 9 108 | syl | ⊢ ( 𝜑 → 1 ∈ 𝐾 ) |
| 110 | 3 4 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
| 111 | 9 110 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
| 112 | 109 111 | ifcld | ⊢ ( 𝜑 → if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) ∈ 𝐾 ) |
| 113 | 112 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) ∧ 𝑏 ∈ 𝑁 ) → if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) ∈ 𝐾 ) |
| 114 | simp1ll | ⊢ ( ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝜑 ) | |
| 115 | 109 111 | ifcld | ⊢ ( 𝜑 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ∈ 𝐾 ) |
| 116 | 114 115 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ∈ 𝐾 ) |
| 117 | 1 2 3 4 5 6 7 8 9 10 11 12 13 103 107 113 116 | mdetunilem2 | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) ) = 0 ) |
| 118 | 102 117 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) |
| 119 | 118 | expr | ⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ) → ( ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) ) |
| 120 | 119 | rexlimdvva | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( ∃ 𝑐 ∈ 𝑁 ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) ) |
| 121 | 78 120 | sylbid | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( ¬ 𝐸 : 𝑁 –1-1→ 𝑁 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) ) |
| 122 | 62 121 | pm2.61d | ⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) |