This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012) (Revised by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralunsn.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | ralunsn | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralunsn.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ) | |
| 3 | 1 | ralsng | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ { 𝐵 } 𝜑 ↔ 𝜓 ) ) |
| 4 | 3 | anbi2d | ⊢ ( 𝐵 ∈ 𝐶 → ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ 𝜓 ) ) ) |
| 5 | 2 4 | bitrid | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ 𝜓 ) ) ) |