This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvsetsid | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) ‘ 𝑋 ) = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsval | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ 𝑈 ) → ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) = ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) = ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ) |
| 3 | 2 | fveq1d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) ‘ 𝑋 ) = ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) |
| 4 | simp2 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝑊 ) | |
| 5 | simp3 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) | |
| 6 | neldifsn | ⊢ ¬ 𝑋 ∈ ( V ∖ { 𝑋 } ) | |
| 7 | dmres | ⊢ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( ( V ∖ { 𝑋 } ) ∩ dom 𝐹 ) | |
| 8 | inss1 | ⊢ ( ( V ∖ { 𝑋 } ) ∩ dom 𝐹 ) ⊆ ( V ∖ { 𝑋 } ) | |
| 9 | 7 8 | eqsstri | ⊢ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ⊆ ( V ∖ { 𝑋 } ) |
| 10 | 9 | sseli | ⊢ ( 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) → 𝑋 ∈ ( V ∖ { 𝑋 } ) ) |
| 11 | 6 10 | mto | ⊢ ¬ 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) |
| 12 | 11 | a1i | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → ¬ 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ) |
| 13 | fsnunfv | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ∧ ¬ 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ) → ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) = 𝑌 ) | |
| 14 | 4 5 12 13 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) = 𝑌 ) |
| 15 | 3 14 | eqtrd | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) ‘ 𝑋 ) = 𝑌 ) |