This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015) Avoid axioms. (Revised by SN, 14-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralss | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 2 | id | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 3 | 2 | pm4.71rd | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 4 | 3 | imbi1d | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) ) |
| 5 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | |
| 6 | 4 5 | bitrdi | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) ) |
| 7 | 6 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) ) |
| 8 | 1 7 | sylbi | ⊢ ( 𝐴 ⊆ 𝐵 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) ) |
| 9 | albi | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) ) |
| 11 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 12 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | |
| 13 | 10 11 12 | 3bitr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |