This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The structure replacement function is a function. (Contributed by SO, 12-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsets | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) : 𝐴 ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | ⊢ ( 𝐴 ∖ { 𝑋 } ) ⊆ 𝐴 | |
| 2 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ∖ { 𝑋 } ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ) |
| 4 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 5 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 7 | 6 | reseq1d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 ↾ 𝐴 ) ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ) |
| 8 | resres | ⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( 𝐴 ∩ ( V ∖ { 𝑋 } ) ) ) | |
| 9 | invdif | ⊢ ( 𝐴 ∩ ( V ∖ { 𝑋 } ) ) = ( 𝐴 ∖ { 𝑋 } ) | |
| 10 | 9 | reseq2i | ⊢ ( 𝐹 ↾ ( 𝐴 ∩ ( V ∖ { 𝑋 } ) ) ) = ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) |
| 11 | 8 10 | eqtri | ⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) |
| 12 | 7 11 | eqtr3di | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ) |
| 13 | 12 | feq1d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ↔ ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ) ) |
| 14 | 3 13 | mpbird | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ) |
| 16 | fsnunf2 | ⊢ ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) : 𝐴 ⟶ 𝐵 ) | |
| 17 | 15 16 | syl3an1 | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) : 𝐴 ⟶ 𝐵 ) |
| 18 | simp1l | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝐹 ∈ 𝑉 ) | |
| 19 | simp3 | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 20 | setsval | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) = ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ) | |
| 21 | 20 | feq1d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) : 𝐴 ⟶ 𝐵 ↔ ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) : 𝐴 ⟶ 𝐵 ) ) |
| 22 | 18 19 21 | syl2anc | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) : 𝐴 ⟶ 𝐵 ↔ ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) : 𝐴 ⟶ 𝐵 ) ) |
| 23 | 17 22 | mpbird | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) : 𝐴 ⟶ 𝐵 ) |