This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the matrix ring as a set exponential. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 16-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matbas2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matbas2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| Assertion | matbas2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matbas2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matbas2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) | |
| 4 | 3 | anidms | ⊢ ( 𝑁 ∈ Fin → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 5 | 4 | anim1ci | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 × 𝑁 ) ∈ Fin ) ) |
| 6 | eqid | ⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | |
| 7 | 6 2 | frlmfibas | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 × 𝑁 ) ∈ Fin ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 8 | 5 7 | syl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 9 | 1 6 | matbas | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 10 | 8 9 | eqtrd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |