This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enfii | |- ( ( B e. Fin /\ A ~~ B ) -> A e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | |- ( B e. Fin <-> E. x e. _om B ~~ x ) |
|
| 2 | df-rex | |- ( E. x e. _om B ~~ x <-> E. x ( x e. _om /\ B ~~ x ) ) |
|
| 3 | 1 2 | sylbb | |- ( B e. Fin -> E. x ( x e. _om /\ B ~~ x ) ) |
| 4 | ensymfib | |- ( B e. Fin -> ( B ~~ A <-> A ~~ B ) ) |
|
| 5 | 4 | biimparc | |- ( ( A ~~ B /\ B e. Fin ) -> B ~~ A ) |
| 6 | 19.41v | |- ( E. x ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) <-> ( E. x ( x e. _om /\ B ~~ x ) /\ B ~~ A ) ) |
|
| 7 | simp1 | |- ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> x e. _om ) |
|
| 8 | nnfi | |- ( x e. _om -> x e. Fin ) |
|
| 9 | ensymfib | |- ( x e. Fin -> ( x ~~ B <-> B ~~ x ) ) |
|
| 10 | 9 | biimpar | |- ( ( x e. Fin /\ B ~~ x ) -> x ~~ B ) |
| 11 | 10 | 3adant3 | |- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> x ~~ B ) |
| 12 | entrfil | |- ( ( x e. Fin /\ x ~~ B /\ B ~~ A ) -> x ~~ A ) |
|
| 13 | 11 12 | syld3an2 | |- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> x ~~ A ) |
| 14 | ensymfib | |- ( x e. Fin -> ( x ~~ A <-> A ~~ x ) ) |
|
| 15 | 14 | 3ad2ant1 | |- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> ( x ~~ A <-> A ~~ x ) ) |
| 16 | 13 15 | mpbid | |- ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> A ~~ x ) |
| 17 | 8 16 | syl3an1 | |- ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> A ~~ x ) |
| 18 | 7 17 | jca | |- ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> ( x e. _om /\ A ~~ x ) ) |
| 19 | 18 | 3expa | |- ( ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> ( x e. _om /\ A ~~ x ) ) |
| 20 | 19 | eximi | |- ( E. x ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> E. x ( x e. _om /\ A ~~ x ) ) |
| 21 | 6 20 | sylbir | |- ( ( E. x ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> E. x ( x e. _om /\ A ~~ x ) ) |
| 22 | 3 5 21 | syl2an2 | |- ( ( A ~~ B /\ B e. Fin ) -> E. x ( x e. _om /\ A ~~ x ) ) |
| 23 | df-rex | |- ( E. x e. _om A ~~ x <-> E. x ( x e. _om /\ A ~~ x ) ) |
|
| 24 | 22 23 | sylibr | |- ( ( A ~~ B /\ B e. Fin ) -> E. x e. _om A ~~ x ) |
| 25 | isfi | |- ( A e. Fin <-> E. x e. _om A ~~ x ) |
|
| 26 | 24 25 | sylibr | |- ( ( A ~~ B /\ B e. Fin ) -> A e. Fin ) |
| 27 | 26 | ancoms | |- ( ( B e. Fin /\ A ~~ B ) -> A e. Fin ) |