This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumless.1 | |- Z = ( ZZ>= ` M ) |
|
| isumless.2 | |- ( ph -> M e. ZZ ) |
||
| isumless.3 | |- ( ph -> A e. Fin ) |
||
| isumless.4 | |- ( ph -> A C_ Z ) |
||
| isumless.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
||
| isumless.6 | |- ( ( ph /\ k e. Z ) -> B e. RR ) |
||
| isumless.7 | |- ( ( ph /\ k e. Z ) -> 0 <_ B ) |
||
| isumless.8 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| Assertion | isumless | |- ( ph -> sum_ k e. A B <_ sum_ k e. Z B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumless.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumless.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isumless.3 | |- ( ph -> A e. Fin ) |
|
| 4 | isumless.4 | |- ( ph -> A C_ Z ) |
|
| 5 | isumless.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
|
| 6 | isumless.6 | |- ( ( ph /\ k e. Z ) -> B e. RR ) |
|
| 7 | isumless.7 | |- ( ( ph /\ k e. Z ) -> 0 <_ B ) |
|
| 8 | isumless.8 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 9 | 4 | sselda | |- ( ( ph /\ k e. A ) -> k e. Z ) |
| 10 | 6 | recnd | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
| 11 | 9 10 | syldan | |- ( ( ph /\ k e. A ) -> B e. CC ) |
| 12 | 11 | ralrimiva | |- ( ph -> A. k e. A B e. CC ) |
| 13 | 1 | eqimssi | |- Z C_ ( ZZ>= ` M ) |
| 14 | 13 | orci | |- ( Z C_ ( ZZ>= ` M ) \/ Z e. Fin ) |
| 15 | 14 | a1i | |- ( ph -> ( Z C_ ( ZZ>= ` M ) \/ Z e. Fin ) ) |
| 16 | sumss2 | |- ( ( ( A C_ Z /\ A. k e. A B e. CC ) /\ ( Z C_ ( ZZ>= ` M ) \/ Z e. Fin ) ) -> sum_ k e. A B = sum_ k e. Z if ( k e. A , B , 0 ) ) |
|
| 17 | 4 12 15 16 | syl21anc | |- ( ph -> sum_ k e. A B = sum_ k e. Z if ( k e. A , B , 0 ) ) |
| 18 | eleq1w | |- ( j = k -> ( j e. A <-> k e. A ) ) |
|
| 19 | fveq2 | |- ( j = k -> ( F ` j ) = ( F ` k ) ) |
|
| 20 | 18 19 | ifbieq1d | |- ( j = k -> if ( j e. A , ( F ` j ) , 0 ) = if ( k e. A , ( F ` k ) , 0 ) ) |
| 21 | eqid | |- ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) = ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) |
|
| 22 | fvex | |- ( F ` k ) e. _V |
|
| 23 | c0ex | |- 0 e. _V |
|
| 24 | 22 23 | ifex | |- if ( k e. A , ( F ` k ) , 0 ) e. _V |
| 25 | 20 21 24 | fvmpt | |- ( k e. Z -> ( ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) ` k ) = if ( k e. A , ( F ` k ) , 0 ) ) |
| 26 | 25 | adantl | |- ( ( ph /\ k e. Z ) -> ( ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) ` k ) = if ( k e. A , ( F ` k ) , 0 ) ) |
| 27 | 5 | ifeq1d | |- ( ( ph /\ k e. Z ) -> if ( k e. A , ( F ` k ) , 0 ) = if ( k e. A , B , 0 ) ) |
| 28 | 26 27 | eqtrd | |- ( ( ph /\ k e. Z ) -> ( ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) ` k ) = if ( k e. A , B , 0 ) ) |
| 29 | 0re | |- 0 e. RR |
|
| 30 | ifcl | |- ( ( B e. RR /\ 0 e. RR ) -> if ( k e. A , B , 0 ) e. RR ) |
|
| 31 | 6 29 30 | sylancl | |- ( ( ph /\ k e. Z ) -> if ( k e. A , B , 0 ) e. RR ) |
| 32 | leid | |- ( B e. RR -> B <_ B ) |
|
| 33 | breq1 | |- ( B = if ( k e. A , B , 0 ) -> ( B <_ B <-> if ( k e. A , B , 0 ) <_ B ) ) |
|
| 34 | breq1 | |- ( 0 = if ( k e. A , B , 0 ) -> ( 0 <_ B <-> if ( k e. A , B , 0 ) <_ B ) ) |
|
| 35 | 33 34 | ifboth | |- ( ( B <_ B /\ 0 <_ B ) -> if ( k e. A , B , 0 ) <_ B ) |
| 36 | 32 35 | sylan | |- ( ( B e. RR /\ 0 <_ B ) -> if ( k e. A , B , 0 ) <_ B ) |
| 37 | 6 7 36 | syl2anc | |- ( ( ph /\ k e. Z ) -> if ( k e. A , B , 0 ) <_ B ) |
| 38 | 1 2 3 4 28 11 | fsumcvg3 | |- ( ph -> seq M ( + , ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) ) e. dom ~~> ) |
| 39 | 1 2 28 31 5 6 37 38 8 | isumle | |- ( ph -> sum_ k e. Z if ( k e. A , B , 0 ) <_ sum_ k e. Z B ) |
| 40 | 17 39 | eqbrtrd | |- ( ph -> sum_ k e. A B <_ sum_ k e. Z B ) |