This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovoliun . (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovoliun.t | |- T = seq 1 ( + , G ) |
|
| ovoliun.g | |- G = ( n e. NN |-> ( vol* ` A ) ) |
||
| ovoliun.a | |- ( ( ph /\ n e. NN ) -> A C_ RR ) |
||
| ovoliun.v | |- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
||
| ovoliun.r | |- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
||
| ovoliun.b | |- ( ph -> B e. RR+ ) |
||
| ovoliun.s | |- S = seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) |
||
| ovoliun.u | |- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
||
| ovoliun.h | |- H = ( k e. NN |-> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) ) |
||
| ovoliun.j | |- ( ph -> J : NN -1-1-onto-> ( NN X. NN ) ) |
||
| ovoliun.f | |- ( ph -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
||
| ovoliun.x1 | |- ( ( ph /\ n e. NN ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
||
| ovoliun.x2 | |- ( ( ph /\ n e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
||
| Assertion | ovoliunlem2 | |- ( ph -> ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovoliun.t | |- T = seq 1 ( + , G ) |
|
| 2 | ovoliun.g | |- G = ( n e. NN |-> ( vol* ` A ) ) |
|
| 3 | ovoliun.a | |- ( ( ph /\ n e. NN ) -> A C_ RR ) |
|
| 4 | ovoliun.v | |- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
|
| 5 | ovoliun.r | |- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
|
| 6 | ovoliun.b | |- ( ph -> B e. RR+ ) |
|
| 7 | ovoliun.s | |- S = seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) |
|
| 8 | ovoliun.u | |- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
|
| 9 | ovoliun.h | |- H = ( k e. NN |-> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) ) |
|
| 10 | ovoliun.j | |- ( ph -> J : NN -1-1-onto-> ( NN X. NN ) ) |
|
| 11 | ovoliun.f | |- ( ph -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
|
| 12 | ovoliun.x1 | |- ( ( ph /\ n e. NN ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
|
| 13 | ovoliun.x2 | |- ( ( ph /\ n e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
|
| 14 | 3 | ralrimiva | |- ( ph -> A. n e. NN A C_ RR ) |
| 15 | iunss | |- ( U_ n e. NN A C_ RR <-> A. n e. NN A C_ RR ) |
|
| 16 | 14 15 | sylibr | |- ( ph -> U_ n e. NN A C_ RR ) |
| 17 | ovolcl | |- ( U_ n e. NN A C_ RR -> ( vol* ` U_ n e. NN A ) e. RR* ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( vol* ` U_ n e. NN A ) e. RR* ) |
| 19 | 11 | adantr | |- ( ( ph /\ k e. NN ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 20 | f1of | |- ( J : NN -1-1-onto-> ( NN X. NN ) -> J : NN --> ( NN X. NN ) ) |
|
| 21 | 10 20 | syl | |- ( ph -> J : NN --> ( NN X. NN ) ) |
| 22 | 21 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( J ` k ) e. ( NN X. NN ) ) |
| 23 | xp1st | |- ( ( J ` k ) e. ( NN X. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) |
|
| 24 | 22 23 | syl | |- ( ( ph /\ k e. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) |
| 25 | 19 24 | ffvelcdmd | |- ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 26 | elovolmlem | |- ( ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 27 | 25 26 | sylib | |- ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 28 | xp2nd | |- ( ( J ` k ) e. ( NN X. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) |
|
| 29 | 22 28 | syl | |- ( ( ph /\ k e. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) |
| 30 | 27 29 | ffvelcdmd | |- ( ( ph /\ k e. NN ) -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 31 | 30 9 | fmptd | |- ( ph -> H : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 32 | eqid | |- ( ( abs o. - ) o. H ) = ( ( abs o. - ) o. H ) |
|
| 33 | 32 8 | ovolsf | |- ( H : NN --> ( <_ i^i ( RR X. RR ) ) -> U : NN --> ( 0 [,) +oo ) ) |
| 34 | frn | |- ( U : NN --> ( 0 [,) +oo ) -> ran U C_ ( 0 [,) +oo ) ) |
|
| 35 | 31 33 34 | 3syl | |- ( ph -> ran U C_ ( 0 [,) +oo ) ) |
| 36 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 37 | 35 36 | sstrdi | |- ( ph -> ran U C_ RR* ) |
| 38 | supxrcl | |- ( ran U C_ RR* -> sup ( ran U , RR* , < ) e. RR* ) |
|
| 39 | 37 38 | syl | |- ( ph -> sup ( ran U , RR* , < ) e. RR* ) |
| 40 | 6 | rpred | |- ( ph -> B e. RR ) |
| 41 | 5 40 | readdcld | |- ( ph -> ( sup ( ran T , RR* , < ) + B ) e. RR ) |
| 42 | 41 | rexrd | |- ( ph -> ( sup ( ran T , RR* , < ) + B ) e. RR* ) |
| 43 | eliun | |- ( z e. U_ n e. NN A <-> E. n e. NN z e. A ) |
|
| 44 | 12 | 3adant3 | |- ( ( ph /\ n e. NN /\ z e. A ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
| 45 | 3 | 3adant3 | |- ( ( ph /\ n e. NN /\ z e. A ) -> A C_ RR ) |
| 46 | 11 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 47 | elovolmlem | |- ( ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 48 | 46 47 | sylib | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 49 | 48 | 3adant3 | |- ( ( ph /\ n e. NN /\ z e. A ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 50 | ovolfioo | |- ( ( A C_ RR /\ ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. ( F ` n ) ) <-> A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) |
|
| 51 | 45 49 50 | syl2anc | |- ( ( ph /\ n e. NN /\ z e. A ) -> ( A C_ U. ran ( (,) o. ( F ` n ) ) <-> A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) |
| 52 | 44 51 | mpbid | |- ( ( ph /\ n e. NN /\ z e. A ) -> A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) |
| 53 | simp3 | |- ( ( ph /\ n e. NN /\ z e. A ) -> z e. A ) |
|
| 54 | rsp | |- ( A. z e. A E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> ( z e. A -> E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) |
|
| 55 | 52 53 54 | sylc | |- ( ( ph /\ n e. NN /\ z e. A ) -> E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) |
| 56 | simpl1 | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ph ) |
|
| 57 | f1ocnv | |- ( J : NN -1-1-onto-> ( NN X. NN ) -> `' J : ( NN X. NN ) -1-1-onto-> NN ) |
|
| 58 | f1of | |- ( `' J : ( NN X. NN ) -1-1-onto-> NN -> `' J : ( NN X. NN ) --> NN ) |
|
| 59 | 56 10 57 58 | 4syl | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> `' J : ( NN X. NN ) --> NN ) |
| 60 | simpl2 | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> n e. NN ) |
|
| 61 | simpr | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> j e. NN ) |
|
| 62 | 59 60 61 | fovcdmd | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( n `' J j ) e. NN ) |
| 63 | 2fveq3 | |- ( k = ( n `' J j ) -> ( 1st ` ( J ` k ) ) = ( 1st ` ( J ` ( n `' J j ) ) ) ) |
|
| 64 | 63 | fveq2d | |- ( k = ( n `' J j ) -> ( F ` ( 1st ` ( J ` k ) ) ) = ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ) |
| 65 | 2fveq3 | |- ( k = ( n `' J j ) -> ( 2nd ` ( J ` k ) ) = ( 2nd ` ( J ` ( n `' J j ) ) ) ) |
|
| 66 | 64 65 | fveq12d | |- ( k = ( n `' J j ) -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) = ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) ) |
| 67 | fvex | |- ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) e. _V |
|
| 68 | 66 9 67 | fvmpt | |- ( ( n `' J j ) e. NN -> ( H ` ( n `' J j ) ) = ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) ) |
| 69 | 62 68 | syl | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( H ` ( n `' J j ) ) = ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) ) |
| 70 | df-ov | |- ( n `' J j ) = ( `' J ` <. n , j >. ) |
|
| 71 | 70 | fveq2i | |- ( J ` ( n `' J j ) ) = ( J ` ( `' J ` <. n , j >. ) ) |
| 72 | 56 10 | syl | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> J : NN -1-1-onto-> ( NN X. NN ) ) |
| 73 | 60 61 | opelxpd | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> <. n , j >. e. ( NN X. NN ) ) |
| 74 | f1ocnvfv2 | |- ( ( J : NN -1-1-onto-> ( NN X. NN ) /\ <. n , j >. e. ( NN X. NN ) ) -> ( J ` ( `' J ` <. n , j >. ) ) = <. n , j >. ) |
|
| 75 | 72 73 74 | syl2anc | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( J ` ( `' J ` <. n , j >. ) ) = <. n , j >. ) |
| 76 | 71 75 | eqtrid | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( J ` ( n `' J j ) ) = <. n , j >. ) |
| 77 | 76 | fveq2d | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 1st ` ( J ` ( n `' J j ) ) ) = ( 1st ` <. n , j >. ) ) |
| 78 | vex | |- n e. _V |
|
| 79 | vex | |- j e. _V |
|
| 80 | 78 79 | op1st | |- ( 1st ` <. n , j >. ) = n |
| 81 | 77 80 | eqtrdi | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 1st ` ( J ` ( n `' J j ) ) ) = n ) |
| 82 | 81 | fveq2d | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) = ( F ` n ) ) |
| 83 | 76 | fveq2d | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 2nd ` ( J ` ( n `' J j ) ) ) = ( 2nd ` <. n , j >. ) ) |
| 84 | 78 79 | op2nd | |- ( 2nd ` <. n , j >. ) = j |
| 85 | 83 84 | eqtrdi | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 2nd ` ( J ` ( n `' J j ) ) ) = j ) |
| 86 | 82 85 | fveq12d | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( F ` ( 1st ` ( J ` ( n `' J j ) ) ) ) ` ( 2nd ` ( J ` ( n `' J j ) ) ) ) = ( ( F ` n ) ` j ) ) |
| 87 | 69 86 | eqtrd | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( H ` ( n `' J j ) ) = ( ( F ` n ) ` j ) ) |
| 88 | 87 | fveq2d | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 1st ` ( H ` ( n `' J j ) ) ) = ( 1st ` ( ( F ` n ) ` j ) ) ) |
| 89 | 88 | breq1d | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( 1st ` ( H ` ( n `' J j ) ) ) < z <-> ( 1st ` ( ( F ` n ) ` j ) ) < z ) ) |
| 90 | 87 | fveq2d | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( 2nd ` ( H ` ( n `' J j ) ) ) = ( 2nd ` ( ( F ` n ) ` j ) ) ) |
| 91 | 90 | breq2d | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( z < ( 2nd ` ( H ` ( n `' J j ) ) ) <-> z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) |
| 92 | 89 91 | anbi12d | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) <-> ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) ) ) |
| 93 | 92 | biimprd | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) ) |
| 94 | 2fveq3 | |- ( m = ( n `' J j ) -> ( 1st ` ( H ` m ) ) = ( 1st ` ( H ` ( n `' J j ) ) ) ) |
|
| 95 | 94 | breq1d | |- ( m = ( n `' J j ) -> ( ( 1st ` ( H ` m ) ) < z <-> ( 1st ` ( H ` ( n `' J j ) ) ) < z ) ) |
| 96 | 2fveq3 | |- ( m = ( n `' J j ) -> ( 2nd ` ( H ` m ) ) = ( 2nd ` ( H ` ( n `' J j ) ) ) ) |
|
| 97 | 96 | breq2d | |- ( m = ( n `' J j ) -> ( z < ( 2nd ` ( H ` m ) ) <-> z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) |
| 98 | 95 97 | anbi12d | |- ( m = ( n `' J j ) -> ( ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) <-> ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) ) |
| 99 | 98 | rspcev | |- ( ( ( n `' J j ) e. NN /\ ( ( 1st ` ( H ` ( n `' J j ) ) ) < z /\ z < ( 2nd ` ( H ` ( n `' J j ) ) ) ) ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) |
| 100 | 62 93 99 | syl6an | |- ( ( ( ph /\ n e. NN /\ z e. A ) /\ j e. NN ) -> ( ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
| 101 | 100 | rexlimdva | |- ( ( ph /\ n e. NN /\ z e. A ) -> ( E. j e. NN ( ( 1st ` ( ( F ` n ) ` j ) ) < z /\ z < ( 2nd ` ( ( F ` n ) ` j ) ) ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
| 102 | 55 101 | mpd | |- ( ( ph /\ n e. NN /\ z e. A ) -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) |
| 103 | 102 | rexlimdv3a | |- ( ph -> ( E. n e. NN z e. A -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
| 104 | 43 103 | biimtrid | |- ( ph -> ( z e. U_ n e. NN A -> E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
| 105 | 104 | ralrimiv | |- ( ph -> A. z e. U_ n e. NN A E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) |
| 106 | ovolfioo | |- ( ( U_ n e. NN A C_ RR /\ H : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( U_ n e. NN A C_ U. ran ( (,) o. H ) <-> A. z e. U_ n e. NN A E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
|
| 107 | 16 31 106 | syl2anc | |- ( ph -> ( U_ n e. NN A C_ U. ran ( (,) o. H ) <-> A. z e. U_ n e. NN A E. m e. NN ( ( 1st ` ( H ` m ) ) < z /\ z < ( 2nd ` ( H ` m ) ) ) ) ) |
| 108 | 105 107 | mpbird | |- ( ph -> U_ n e. NN A C_ U. ran ( (,) o. H ) ) |
| 109 | 8 | ovollb | |- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ U_ n e. NN A C_ U. ran ( (,) o. H ) ) -> ( vol* ` U_ n e. NN A ) <_ sup ( ran U , RR* , < ) ) |
| 110 | 31 108 109 | syl2anc | |- ( ph -> ( vol* ` U_ n e. NN A ) <_ sup ( ran U , RR* , < ) ) |
| 111 | fzfi | |- ( 1 ... j ) e. Fin |
|
| 112 | elfznn | |- ( w e. ( 1 ... j ) -> w e. NN ) |
|
| 113 | ffvelcdm | |- ( ( J : NN --> ( NN X. NN ) /\ w e. NN ) -> ( J ` w ) e. ( NN X. NN ) ) |
|
| 114 | xp1st | |- ( ( J ` w ) e. ( NN X. NN ) -> ( 1st ` ( J ` w ) ) e. NN ) |
|
| 115 | nnre | |- ( ( 1st ` ( J ` w ) ) e. NN -> ( 1st ` ( J ` w ) ) e. RR ) |
|
| 116 | 113 114 115 | 3syl | |- ( ( J : NN --> ( NN X. NN ) /\ w e. NN ) -> ( 1st ` ( J ` w ) ) e. RR ) |
| 117 | 21 112 116 | syl2an | |- ( ( ph /\ w e. ( 1 ... j ) ) -> ( 1st ` ( J ` w ) ) e. RR ) |
| 118 | 117 | ralrimiva | |- ( ph -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) e. RR ) |
| 119 | 118 | adantr | |- ( ( ph /\ j e. NN ) -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) e. RR ) |
| 120 | fimaxre3 | |- ( ( ( 1 ... j ) e. Fin /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) e. RR ) -> E. x e. RR A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x ) |
|
| 121 | 111 119 120 | sylancr | |- ( ( ph /\ j e. NN ) -> E. x e. RR A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x ) |
| 122 | fllep1 | |- ( x e. RR -> x <_ ( ( |_ ` x ) + 1 ) ) |
|
| 123 | 122 | ad2antlr | |- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> x <_ ( ( |_ ` x ) + 1 ) ) |
| 124 | 117 | adantlr | |- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( 1st ` ( J ` w ) ) e. RR ) |
| 125 | simplr | |- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> x e. RR ) |
|
| 126 | flcl | |- ( x e. RR -> ( |_ ` x ) e. ZZ ) |
|
| 127 | 126 | peano2zd | |- ( x e. RR -> ( ( |_ ` x ) + 1 ) e. ZZ ) |
| 128 | 127 | zred | |- ( x e. RR -> ( ( |_ ` x ) + 1 ) e. RR ) |
| 129 | 128 | ad2antlr | |- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( ( |_ ` x ) + 1 ) e. RR ) |
| 130 | letr | |- ( ( ( 1st ` ( J ` w ) ) e. RR /\ x e. RR /\ ( ( |_ ` x ) + 1 ) e. RR ) -> ( ( ( 1st ` ( J ` w ) ) <_ x /\ x <_ ( ( |_ ` x ) + 1 ) ) -> ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) |
|
| 131 | 124 125 129 130 | syl3anc | |- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( ( ( 1st ` ( J ` w ) ) <_ x /\ x <_ ( ( |_ ` x ) + 1 ) ) -> ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) |
| 132 | 123 131 | mpan2d | |- ( ( ( ph /\ x e. RR ) /\ w e. ( 1 ... j ) ) -> ( ( 1st ` ( J ` w ) ) <_ x -> ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) |
| 133 | 132 | ralimdva | |- ( ( ph /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) |
| 134 | 133 | adantlr | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) |
| 135 | simpll | |- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> ph ) |
|
| 136 | 135 3 | sylan | |- ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> A C_ RR ) |
| 137 | 135 4 | sylan | |- ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
| 138 | 135 5 | syl | |- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> sup ( ran T , RR* , < ) e. RR ) |
| 139 | 135 6 | syl | |- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> B e. RR+ ) |
| 140 | 135 10 | syl | |- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> J : NN -1-1-onto-> ( NN X. NN ) ) |
| 141 | 135 11 | syl | |- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 142 | 135 12 | sylan | |- ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
| 143 | 135 13 | sylan | |- ( ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) /\ n e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
| 144 | simplr | |- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> j e. NN ) |
|
| 145 | 127 | ad2antrl | |- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> ( ( |_ ` x ) + 1 ) e. ZZ ) |
| 146 | simprr | |- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) |
|
| 147 | 1 2 136 137 138 139 7 8 9 140 141 142 143 144 145 146 | ovoliunlem1 | |- ( ( ( ph /\ j e. NN ) /\ ( x e. RR /\ A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) ) ) -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
| 148 | 147 | expr | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ ( ( |_ ` x ) + 1 ) -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
| 149 | 134 148 | syld | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
| 150 | 149 | rexlimdva | |- ( ( ph /\ j e. NN ) -> ( E. x e. RR A. w e. ( 1 ... j ) ( 1st ` ( J ` w ) ) <_ x -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
| 151 | 121 150 | mpd | |- ( ( ph /\ j e. NN ) -> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
| 152 | 151 | ralrimiva | |- ( ph -> A. j e. NN ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
| 153 | ffn | |- ( U : NN --> ( 0 [,) +oo ) -> U Fn NN ) |
|
| 154 | breq1 | |- ( z = ( U ` j ) -> ( z <_ ( sup ( ran T , RR* , < ) + B ) <-> ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
|
| 155 | 154 | ralrn | |- ( U Fn NN -> ( A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) <-> A. j e. NN ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
| 156 | 31 33 153 155 | 4syl | |- ( ph -> ( A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) <-> A. j e. NN ( U ` j ) <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
| 157 | 152 156 | mpbird | |- ( ph -> A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) ) |
| 158 | supxrleub | |- ( ( ran U C_ RR* /\ ( sup ( ran T , RR* , < ) + B ) e. RR* ) -> ( sup ( ran U , RR* , < ) <_ ( sup ( ran T , RR* , < ) + B ) <-> A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
|
| 159 | 37 42 158 | syl2anc | |- ( ph -> ( sup ( ran U , RR* , < ) <_ ( sup ( ran T , RR* , < ) + B ) <-> A. z e. ran U z <_ ( sup ( ran T , RR* , < ) + B ) ) ) |
| 160 | 157 159 | mpbird | |- ( ph -> sup ( ran U , RR* , < ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
| 161 | 18 39 42 110 160 | xrletrd | |- ( ph -> ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + B ) ) |