This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue outer measure function is countably sub-additive. (Many books allow +oo as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss , so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovoliun.t | |- T = seq 1 ( + , G ) |
|
| ovoliun.g | |- G = ( n e. NN |-> ( vol* ` A ) ) |
||
| ovoliun.a | |- ( ( ph /\ n e. NN ) -> A C_ RR ) |
||
| ovoliun.v | |- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
||
| Assertion | ovoliun | |- ( ph -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovoliun.t | |- T = seq 1 ( + , G ) |
|
| 2 | ovoliun.g | |- G = ( n e. NN |-> ( vol* ` A ) ) |
|
| 3 | ovoliun.a | |- ( ( ph /\ n e. NN ) -> A C_ RR ) |
|
| 4 | ovoliun.v | |- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
|
| 5 | mnfxr | |- -oo e. RR* |
|
| 6 | 5 | a1i | |- ( ph -> -oo e. RR* ) |
| 7 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 8 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 9 | 4 2 | fmptd | |- ( ph -> G : NN --> RR ) |
| 10 | 9 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 11 | 7 8 10 | serfre | |- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
| 12 | 1 | feq1i | |- ( T : NN --> RR <-> seq 1 ( + , G ) : NN --> RR ) |
| 13 | 11 12 | sylibr | |- ( ph -> T : NN --> RR ) |
| 14 | 1nn | |- 1 e. NN |
|
| 15 | ffvelcdm | |- ( ( T : NN --> RR /\ 1 e. NN ) -> ( T ` 1 ) e. RR ) |
|
| 16 | 13 14 15 | sylancl | |- ( ph -> ( T ` 1 ) e. RR ) |
| 17 | 16 | rexrd | |- ( ph -> ( T ` 1 ) e. RR* ) |
| 18 | 13 | frnd | |- ( ph -> ran T C_ RR ) |
| 19 | ressxr | |- RR C_ RR* |
|
| 20 | 18 19 | sstrdi | |- ( ph -> ran T C_ RR* ) |
| 21 | supxrcl | |- ( ran T C_ RR* -> sup ( ran T , RR* , < ) e. RR* ) |
|
| 22 | 20 21 | syl | |- ( ph -> sup ( ran T , RR* , < ) e. RR* ) |
| 23 | 16 | mnfltd | |- ( ph -> -oo < ( T ` 1 ) ) |
| 24 | 13 | ffnd | |- ( ph -> T Fn NN ) |
| 25 | fnfvelrn | |- ( ( T Fn NN /\ 1 e. NN ) -> ( T ` 1 ) e. ran T ) |
|
| 26 | 24 14 25 | sylancl | |- ( ph -> ( T ` 1 ) e. ran T ) |
| 27 | supxrub | |- ( ( ran T C_ RR* /\ ( T ` 1 ) e. ran T ) -> ( T ` 1 ) <_ sup ( ran T , RR* , < ) ) |
|
| 28 | 20 26 27 | syl2anc | |- ( ph -> ( T ` 1 ) <_ sup ( ran T , RR* , < ) ) |
| 29 | 6 17 22 23 28 | xrltletrd | |- ( ph -> -oo < sup ( ran T , RR* , < ) ) |
| 30 | xrrebnd | |- ( sup ( ran T , RR* , < ) e. RR* -> ( sup ( ran T , RR* , < ) e. RR <-> ( -oo < sup ( ran T , RR* , < ) /\ sup ( ran T , RR* , < ) < +oo ) ) ) |
|
| 31 | 22 30 | syl | |- ( ph -> ( sup ( ran T , RR* , < ) e. RR <-> ( -oo < sup ( ran T , RR* , < ) /\ sup ( ran T , RR* , < ) < +oo ) ) ) |
| 32 | 29 31 | mpbirand | |- ( ph -> ( sup ( ran T , RR* , < ) e. RR <-> sup ( ran T , RR* , < ) < +oo ) ) |
| 33 | nfcv | |- F/_ m A |
|
| 34 | nfcsb1v | |- F/_ n [_ m / n ]_ A |
|
| 35 | csbeq1a | |- ( n = m -> A = [_ m / n ]_ A ) |
|
| 36 | 33 34 35 | cbviun | |- U_ n e. NN A = U_ m e. NN [_ m / n ]_ A |
| 37 | 36 | fveq2i | |- ( vol* ` U_ n e. NN A ) = ( vol* ` U_ m e. NN [_ m / n ]_ A ) |
| 38 | nfcv | |- F/_ m ( vol* ` A ) |
|
| 39 | nfcv | |- F/_ n vol* |
|
| 40 | 39 34 | nffv | |- F/_ n ( vol* ` [_ m / n ]_ A ) |
| 41 | 35 | fveq2d | |- ( n = m -> ( vol* ` A ) = ( vol* ` [_ m / n ]_ A ) ) |
| 42 | 38 40 41 | cbvmpt | |- ( n e. NN |-> ( vol* ` A ) ) = ( m e. NN |-> ( vol* ` [_ m / n ]_ A ) ) |
| 43 | 2 42 | eqtri | |- G = ( m e. NN |-> ( vol* ` [_ m / n ]_ A ) ) |
| 44 | 3 | ralrimiva | |- ( ph -> A. n e. NN A C_ RR ) |
| 45 | nfv | |- F/ m A C_ RR |
|
| 46 | nfcv | |- F/_ n RR |
|
| 47 | 34 46 | nfss | |- F/ n [_ m / n ]_ A C_ RR |
| 48 | 35 | sseq1d | |- ( n = m -> ( A C_ RR <-> [_ m / n ]_ A C_ RR ) ) |
| 49 | 45 47 48 | cbvralw | |- ( A. n e. NN A C_ RR <-> A. m e. NN [_ m / n ]_ A C_ RR ) |
| 50 | 44 49 | sylib | |- ( ph -> A. m e. NN [_ m / n ]_ A C_ RR ) |
| 51 | 50 | ad2antrr | |- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> A. m e. NN [_ m / n ]_ A C_ RR ) |
| 52 | 51 | r19.21bi | |- ( ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) /\ m e. NN ) -> [_ m / n ]_ A C_ RR ) |
| 53 | 4 | ralrimiva | |- ( ph -> A. n e. NN ( vol* ` A ) e. RR ) |
| 54 | 38 | nfel1 | |- F/ m ( vol* ` A ) e. RR |
| 55 | 40 | nfel1 | |- F/ n ( vol* ` [_ m / n ]_ A ) e. RR |
| 56 | 41 | eleq1d | |- ( n = m -> ( ( vol* ` A ) e. RR <-> ( vol* ` [_ m / n ]_ A ) e. RR ) ) |
| 57 | 54 55 56 | cbvralw | |- ( A. n e. NN ( vol* ` A ) e. RR <-> A. m e. NN ( vol* ` [_ m / n ]_ A ) e. RR ) |
| 58 | 53 57 | sylib | |- ( ph -> A. m e. NN ( vol* ` [_ m / n ]_ A ) e. RR ) |
| 59 | 58 | ad2antrr | |- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> A. m e. NN ( vol* ` [_ m / n ]_ A ) e. RR ) |
| 60 | 59 | r19.21bi | |- ( ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) /\ m e. NN ) -> ( vol* ` [_ m / n ]_ A ) e. RR ) |
| 61 | simplr | |- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> sup ( ran T , RR* , < ) e. RR ) |
|
| 62 | simpr | |- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> x e. RR+ ) |
|
| 63 | 1 43 52 60 61 62 | ovoliunlem3 | |- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> ( vol* ` U_ m e. NN [_ m / n ]_ A ) <_ ( sup ( ran T , RR* , < ) + x ) ) |
| 64 | 37 63 | eqbrtrid | |- ( ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) /\ x e. RR+ ) -> ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + x ) ) |
| 65 | 64 | ralrimiva | |- ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) -> A. x e. RR+ ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + x ) ) |
| 66 | iunss | |- ( U_ n e. NN A C_ RR <-> A. n e. NN A C_ RR ) |
|
| 67 | 44 66 | sylibr | |- ( ph -> U_ n e. NN A C_ RR ) |
| 68 | ovolcl | |- ( U_ n e. NN A C_ RR -> ( vol* ` U_ n e. NN A ) e. RR* ) |
|
| 69 | 67 68 | syl | |- ( ph -> ( vol* ` U_ n e. NN A ) e. RR* ) |
| 70 | xralrple | |- ( ( ( vol* ` U_ n e. NN A ) e. RR* /\ sup ( ran T , RR* , < ) e. RR ) -> ( ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) <-> A. x e. RR+ ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + x ) ) ) |
|
| 71 | 69 70 | sylan | |- ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) -> ( ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) <-> A. x e. RR+ ( vol* ` U_ n e. NN A ) <_ ( sup ( ran T , RR* , < ) + x ) ) ) |
| 72 | 65 71 | mpbird | |- ( ( ph /\ sup ( ran T , RR* , < ) e. RR ) -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) |
| 73 | 72 | ex | |- ( ph -> ( sup ( ran T , RR* , < ) e. RR -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) ) |
| 74 | 32 73 | sylbird | |- ( ph -> ( sup ( ran T , RR* , < ) < +oo -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) ) |
| 75 | nltpnft | |- ( sup ( ran T , RR* , < ) e. RR* -> ( sup ( ran T , RR* , < ) = +oo <-> -. sup ( ran T , RR* , < ) < +oo ) ) |
|
| 76 | 22 75 | syl | |- ( ph -> ( sup ( ran T , RR* , < ) = +oo <-> -. sup ( ran T , RR* , < ) < +oo ) ) |
| 77 | pnfge | |- ( ( vol* ` U_ n e. NN A ) e. RR* -> ( vol* ` U_ n e. NN A ) <_ +oo ) |
|
| 78 | 69 77 | syl | |- ( ph -> ( vol* ` U_ n e. NN A ) <_ +oo ) |
| 79 | breq2 | |- ( sup ( ran T , RR* , < ) = +oo -> ( ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) <-> ( vol* ` U_ n e. NN A ) <_ +oo ) ) |
|
| 80 | 78 79 | syl5ibrcom | |- ( ph -> ( sup ( ran T , RR* , < ) = +oo -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) ) |
| 81 | 76 80 | sylbird | |- ( ph -> ( -. sup ( ran T , RR* , < ) < +oo -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) ) |
| 82 | 74 81 | pm2.61d | |- ( ph -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) |