This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015) Reduce DV conditions. (Revised by Matthew House, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralima.x | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| Assertion | ralima | |- ( ( F Fn A /\ B C_ A ) -> ( A. x e. ( F " B ) ph <-> A. y e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralima.x | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| 2 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 3 | 2 | funfnd | |- ( F Fn A -> F Fn dom F ) |
| 4 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 5 | 4 | sseq2d | |- ( F Fn A -> ( B C_ dom F <-> B C_ A ) ) |
| 6 | 5 | biimpar | |- ( ( F Fn A /\ B C_ A ) -> B C_ dom F ) |
| 7 | fvexd | |- ( ( ( F Fn dom F /\ B C_ dom F ) /\ y e. B ) -> ( F ` y ) e. _V ) |
|
| 8 | fvelimab | |- ( ( F Fn dom F /\ B C_ dom F ) -> ( x e. ( F " B ) <-> E. y e. B ( F ` y ) = x ) ) |
|
| 9 | eqcom | |- ( ( F ` y ) = x <-> x = ( F ` y ) ) |
|
| 10 | 9 | rexbii | |- ( E. y e. B ( F ` y ) = x <-> E. y e. B x = ( F ` y ) ) |
| 11 | 8 10 | bitrdi | |- ( ( F Fn dom F /\ B C_ dom F ) -> ( x e. ( F " B ) <-> E. y e. B x = ( F ` y ) ) ) |
| 12 | 1 | adantl | |- ( ( ( F Fn dom F /\ B C_ dom F ) /\ x = ( F ` y ) ) -> ( ph <-> ps ) ) |
| 13 | 7 11 12 | ralxfr2d | |- ( ( F Fn dom F /\ B C_ dom F ) -> ( A. x e. ( F " B ) ph <-> A. y e. B ps ) ) |
| 14 | 3 6 13 | syl2an2r | |- ( ( F Fn A /\ B C_ A ) -> ( A. x e. ( F " B ) ph <-> A. y e. B ps ) ) |