This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the finite geometric series 2 ^ -u 1 + 2 ^ -u 2 + ... + 2 ^ -u N , multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geo2sum | |- ( ( N e. NN /\ A e. CC ) -> sum_ k e. ( 1 ... N ) ( A / ( 2 ^ k ) ) = ( A - ( A / ( 2 ^ N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1zzd | |- ( ( N e. NN /\ A e. CC ) -> 1 e. ZZ ) |
|
| 2 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 3 | 2 | adantr | |- ( ( N e. NN /\ A e. CC ) -> N e. ZZ ) |
| 4 | simplr | |- ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> A e. CC ) |
|
| 5 | 2nn | |- 2 e. NN |
|
| 6 | elfznn | |- ( k e. ( 1 ... N ) -> k e. NN ) |
|
| 7 | 6 | adantl | |- ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> k e. NN ) |
| 8 | 7 | nnnn0d | |- ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> k e. NN0 ) |
| 9 | nnexpcl | |- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
|
| 10 | 5 8 9 | sylancr | |- ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> ( 2 ^ k ) e. NN ) |
| 11 | 10 | nncnd | |- ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> ( 2 ^ k ) e. CC ) |
| 12 | 10 | nnne0d | |- ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> ( 2 ^ k ) =/= 0 ) |
| 13 | 4 11 12 | divcld | |- ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> ( A / ( 2 ^ k ) ) e. CC ) |
| 14 | oveq2 | |- ( k = ( j + 1 ) -> ( 2 ^ k ) = ( 2 ^ ( j + 1 ) ) ) |
|
| 15 | 14 | oveq2d | |- ( k = ( j + 1 ) -> ( A / ( 2 ^ k ) ) = ( A / ( 2 ^ ( j + 1 ) ) ) ) |
| 16 | 1 1 3 13 15 | fsumshftm | |- ( ( N e. NN /\ A e. CC ) -> sum_ k e. ( 1 ... N ) ( A / ( 2 ^ k ) ) = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) ) |
| 17 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 18 | 17 | oveq1i | |- ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) |
| 19 | 18 | sumeq1i | |- sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) |
| 20 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 21 | elfznn0 | |- ( j e. ( 0 ... ( N - 1 ) ) -> j e. NN0 ) |
|
| 22 | 21 | adantl | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. NN0 ) |
| 23 | expcl | |- ( ( ( 1 / 2 ) e. CC /\ j e. NN0 ) -> ( ( 1 / 2 ) ^ j ) e. CC ) |
|
| 24 | 20 22 23 | sylancr | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 / 2 ) ^ j ) e. CC ) |
| 25 | 2cnd | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> 2 e. CC ) |
|
| 26 | 2ne0 | |- 2 =/= 0 |
|
| 27 | 26 | a1i | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> 2 =/= 0 ) |
| 28 | 24 25 27 | divrecd | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1 / 2 ) ^ j ) / 2 ) = ( ( ( 1 / 2 ) ^ j ) x. ( 1 / 2 ) ) ) |
| 29 | expp1 | |- ( ( ( 1 / 2 ) e. CC /\ j e. NN0 ) -> ( ( 1 / 2 ) ^ ( j + 1 ) ) = ( ( ( 1 / 2 ) ^ j ) x. ( 1 / 2 ) ) ) |
|
| 30 | 20 22 29 | sylancr | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 / 2 ) ^ ( j + 1 ) ) = ( ( ( 1 / 2 ) ^ j ) x. ( 1 / 2 ) ) ) |
| 31 | elfzelz | |- ( j e. ( 0 ... ( N - 1 ) ) -> j e. ZZ ) |
|
| 32 | 31 | peano2zd | |- ( j e. ( 0 ... ( N - 1 ) ) -> ( j + 1 ) e. ZZ ) |
| 33 | 32 | adantl | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) e. ZZ ) |
| 34 | 25 27 33 | exprecd | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 / 2 ) ^ ( j + 1 ) ) = ( 1 / ( 2 ^ ( j + 1 ) ) ) ) |
| 35 | 28 30 34 | 3eqtr2rd | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( 1 / ( 2 ^ ( j + 1 ) ) ) = ( ( ( 1 / 2 ) ^ j ) / 2 ) ) |
| 36 | 35 | oveq2d | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( A x. ( 1 / ( 2 ^ ( j + 1 ) ) ) ) = ( A x. ( ( ( 1 / 2 ) ^ j ) / 2 ) ) ) |
| 37 | simplr | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> A e. CC ) |
|
| 38 | peano2nn0 | |- ( j e. NN0 -> ( j + 1 ) e. NN0 ) |
|
| 39 | 22 38 | syl | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) e. NN0 ) |
| 40 | nnexpcl | |- ( ( 2 e. NN /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
|
| 41 | 5 39 40 | sylancr | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
| 42 | 41 | nncnd | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( 2 ^ ( j + 1 ) ) e. CC ) |
| 43 | 41 | nnne0d | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( 2 ^ ( j + 1 ) ) =/= 0 ) |
| 44 | 37 42 43 | divrecd | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( A / ( 2 ^ ( j + 1 ) ) ) = ( A x. ( 1 / ( 2 ^ ( j + 1 ) ) ) ) ) |
| 45 | 24 37 25 27 | div12d | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) = ( A x. ( ( ( 1 / 2 ) ^ j ) / 2 ) ) ) |
| 46 | 36 44 45 | 3eqtr4d | |- ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( A / ( 2 ^ ( j + 1 ) ) ) = ( ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) ) |
| 47 | 46 | sumeq2dv | |- ( ( N e. NN /\ A e. CC ) -> sum_ j e. ( 0 ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) ) |
| 48 | fzfid | |- ( ( N e. NN /\ A e. CC ) -> ( 0 ... ( N - 1 ) ) e. Fin ) |
|
| 49 | halfcl | |- ( A e. CC -> ( A / 2 ) e. CC ) |
|
| 50 | 49 | adantl | |- ( ( N e. NN /\ A e. CC ) -> ( A / 2 ) e. CC ) |
| 51 | 48 50 24 | fsummulc1 | |- ( ( N e. NN /\ A e. CC ) -> ( sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) ) |
| 52 | 47 51 | eqtr4d | |- ( ( N e. NN /\ A e. CC ) -> sum_ j e. ( 0 ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) = ( sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) ) |
| 53 | 19 52 | eqtrid | |- ( ( N e. NN /\ A e. CC ) -> sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) = ( sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) ) |
| 54 | 2cnd | |- ( ( N e. NN /\ A e. CC ) -> 2 e. CC ) |
|
| 55 | 26 | a1i | |- ( ( N e. NN /\ A e. CC ) -> 2 =/= 0 ) |
| 56 | 54 55 3 | exprecd | |- ( ( N e. NN /\ A e. CC ) -> ( ( 1 / 2 ) ^ N ) = ( 1 / ( 2 ^ N ) ) ) |
| 57 | 56 | oveq2d | |- ( ( N e. NN /\ A e. CC ) -> ( 1 - ( ( 1 / 2 ) ^ N ) ) = ( 1 - ( 1 / ( 2 ^ N ) ) ) ) |
| 58 | 1mhlfehlf | |- ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) |
|
| 59 | 58 | a1i | |- ( ( N e. NN /\ A e. CC ) -> ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) ) |
| 60 | 57 59 | oveq12d | |- ( ( N e. NN /\ A e. CC ) -> ( ( 1 - ( ( 1 / 2 ) ^ N ) ) / ( 1 - ( 1 / 2 ) ) ) = ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) ) |
| 61 | simpr | |- ( ( N e. NN /\ A e. CC ) -> A e. CC ) |
|
| 62 | 61 54 55 | divrec2d | |- ( ( N e. NN /\ A e. CC ) -> ( A / 2 ) = ( ( 1 / 2 ) x. A ) ) |
| 63 | 60 62 | oveq12d | |- ( ( N e. NN /\ A e. CC ) -> ( ( ( 1 - ( ( 1 / 2 ) ^ N ) ) / ( 1 - ( 1 / 2 ) ) ) x. ( A / 2 ) ) = ( ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) x. ( ( 1 / 2 ) x. A ) ) ) |
| 64 | ax-1cn | |- 1 e. CC |
|
| 65 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 66 | 65 | adantr | |- ( ( N e. NN /\ A e. CC ) -> N e. NN0 ) |
| 67 | nnexpcl | |- ( ( 2 e. NN /\ N e. NN0 ) -> ( 2 ^ N ) e. NN ) |
|
| 68 | 5 66 67 | sylancr | |- ( ( N e. NN /\ A e. CC ) -> ( 2 ^ N ) e. NN ) |
| 69 | 68 | nnrecred | |- ( ( N e. NN /\ A e. CC ) -> ( 1 / ( 2 ^ N ) ) e. RR ) |
| 70 | 69 | recnd | |- ( ( N e. NN /\ A e. CC ) -> ( 1 / ( 2 ^ N ) ) e. CC ) |
| 71 | subcl | |- ( ( 1 e. CC /\ ( 1 / ( 2 ^ N ) ) e. CC ) -> ( 1 - ( 1 / ( 2 ^ N ) ) ) e. CC ) |
|
| 72 | 64 70 71 | sylancr | |- ( ( N e. NN /\ A e. CC ) -> ( 1 - ( 1 / ( 2 ^ N ) ) ) e. CC ) |
| 73 | 20 | a1i | |- ( ( N e. NN /\ A e. CC ) -> ( 1 / 2 ) e. CC ) |
| 74 | 0re | |- 0 e. RR |
|
| 75 | halfgt0 | |- 0 < ( 1 / 2 ) |
|
| 76 | 74 75 | gtneii | |- ( 1 / 2 ) =/= 0 |
| 77 | 76 | a1i | |- ( ( N e. NN /\ A e. CC ) -> ( 1 / 2 ) =/= 0 ) |
| 78 | 72 73 77 | divcld | |- ( ( N e. NN /\ A e. CC ) -> ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) e. CC ) |
| 79 | 78 73 61 | mulassd | |- ( ( N e. NN /\ A e. CC ) -> ( ( ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) x. ( 1 / 2 ) ) x. A ) = ( ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) x. ( ( 1 / 2 ) x. A ) ) ) |
| 80 | 72 73 77 | divcan1d | |- ( ( N e. NN /\ A e. CC ) -> ( ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) x. ( 1 / 2 ) ) = ( 1 - ( 1 / ( 2 ^ N ) ) ) ) |
| 81 | 80 | oveq1d | |- ( ( N e. NN /\ A e. CC ) -> ( ( ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) x. ( 1 / 2 ) ) x. A ) = ( ( 1 - ( 1 / ( 2 ^ N ) ) ) x. A ) ) |
| 82 | 63 79 81 | 3eqtr2d | |- ( ( N e. NN /\ A e. CC ) -> ( ( ( 1 - ( ( 1 / 2 ) ^ N ) ) / ( 1 - ( 1 / 2 ) ) ) x. ( A / 2 ) ) = ( ( 1 - ( 1 / ( 2 ^ N ) ) ) x. A ) ) |
| 83 | halfre | |- ( 1 / 2 ) e. RR |
|
| 84 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 85 | 83 84 | ltneii | |- ( 1 / 2 ) =/= 1 |
| 86 | 85 | a1i | |- ( ( N e. NN /\ A e. CC ) -> ( 1 / 2 ) =/= 1 ) |
| 87 | 73 86 66 | geoser | |- ( ( N e. NN /\ A e. CC ) -> sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) = ( ( 1 - ( ( 1 / 2 ) ^ N ) ) / ( 1 - ( 1 / 2 ) ) ) ) |
| 88 | 87 | oveq1d | |- ( ( N e. NN /\ A e. CC ) -> ( sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) = ( ( ( 1 - ( ( 1 / 2 ) ^ N ) ) / ( 1 - ( 1 / 2 ) ) ) x. ( A / 2 ) ) ) |
| 89 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 90 | 89 | adantl | |- ( ( N e. NN /\ A e. CC ) -> ( 1 x. A ) = A ) |
| 91 | 90 | eqcomd | |- ( ( N e. NN /\ A e. CC ) -> A = ( 1 x. A ) ) |
| 92 | 68 | nncnd | |- ( ( N e. NN /\ A e. CC ) -> ( 2 ^ N ) e. CC ) |
| 93 | 68 | nnne0d | |- ( ( N e. NN /\ A e. CC ) -> ( 2 ^ N ) =/= 0 ) |
| 94 | 61 92 93 | divrec2d | |- ( ( N e. NN /\ A e. CC ) -> ( A / ( 2 ^ N ) ) = ( ( 1 / ( 2 ^ N ) ) x. A ) ) |
| 95 | 91 94 | oveq12d | |- ( ( N e. NN /\ A e. CC ) -> ( A - ( A / ( 2 ^ N ) ) ) = ( ( 1 x. A ) - ( ( 1 / ( 2 ^ N ) ) x. A ) ) ) |
| 96 | 64 | a1i | |- ( ( N e. NN /\ A e. CC ) -> 1 e. CC ) |
| 97 | 96 70 61 | subdird | |- ( ( N e. NN /\ A e. CC ) -> ( ( 1 - ( 1 / ( 2 ^ N ) ) ) x. A ) = ( ( 1 x. A ) - ( ( 1 / ( 2 ^ N ) ) x. A ) ) ) |
| 98 | 95 97 | eqtr4d | |- ( ( N e. NN /\ A e. CC ) -> ( A - ( A / ( 2 ^ N ) ) ) = ( ( 1 - ( 1 / ( 2 ^ N ) ) ) x. A ) ) |
| 99 | 82 88 98 | 3eqtr4d | |- ( ( N e. NN /\ A e. CC ) -> ( sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) = ( A - ( A / ( 2 ^ N ) ) ) ) |
| 100 | 16 53 99 | 3eqtrd | |- ( ( N e. NN /\ A e. CC ) -> sum_ k e. ( 1 ... N ) ( A / ( 2 ^ k ) ) = ( A - ( A / ( 2 ^ N ) ) ) ) |