This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xp1st | |- ( A e. ( B X. C ) -> ( 1st ` A ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp | |- ( A e. ( B X. C ) <-> E. b E. c ( A = <. b , c >. /\ ( b e. B /\ c e. C ) ) ) |
|
| 2 | vex | |- b e. _V |
|
| 3 | vex | |- c e. _V |
|
| 4 | 2 3 | op1std | |- ( A = <. b , c >. -> ( 1st ` A ) = b ) |
| 5 | 4 | eleq1d | |- ( A = <. b , c >. -> ( ( 1st ` A ) e. B <-> b e. B ) ) |
| 6 | 5 | biimpar | |- ( ( A = <. b , c >. /\ b e. B ) -> ( 1st ` A ) e. B ) |
| 7 | 6 | adantrr | |- ( ( A = <. b , c >. /\ ( b e. B /\ c e. C ) ) -> ( 1st ` A ) e. B ) |
| 8 | 7 | exlimivv | |- ( E. b E. c ( A = <. b , c >. /\ ( b e. B /\ c e. C ) ) -> ( 1st ` A ) e. B ) |
| 9 | 1 8 | sylbi | |- ( A e. ( B X. C ) -> ( 1st ` A ) e. B ) |