This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrre | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> A e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> -oo < A ) |
|
| 2 | ltpnf | |- ( B e. RR -> B < +oo ) |
|
| 3 | 2 | adantl | |- ( ( A e. RR* /\ B e. RR ) -> B < +oo ) |
| 4 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 5 | pnfxr | |- +oo e. RR* |
|
| 6 | xrlelttr | |- ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) |
|
| 7 | 5 6 | mp3an3 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) |
| 8 | 4 7 | sylan2 | |- ( ( A e. RR* /\ B e. RR ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) |
| 9 | 3 8 | mpan2d | |- ( ( A e. RR* /\ B e. RR ) -> ( A <_ B -> A < +oo ) ) |
| 10 | 9 | imp | |- ( ( ( A e. RR* /\ B e. RR ) /\ A <_ B ) -> A < +oo ) |
| 11 | 10 | adantrl | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> A < +oo ) |
| 12 | xrrebnd | |- ( A e. RR* -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
|
| 13 | 12 | ad2antrr | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
| 14 | 1 11 13 | mpbir2and | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> A e. RR ) |