This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair membership in a Cartesian product. (Contributed by NM, 15-Nov-1994) (Proof shortened by Andrew Salmon, 12-Aug-2011) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelxp | |- ( <. A , B >. e. ( C X. D ) <-> ( A e. C /\ B e. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 | |- ( <. A , B >. e. ( C X. D ) <-> E. x e. C E. y e. D <. A , B >. = <. x , y >. ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | opth2 | |- ( <. A , B >. = <. x , y >. <-> ( A = x /\ B = y ) ) |
| 5 | eleq1 | |- ( A = x -> ( A e. C <-> x e. C ) ) |
|
| 6 | eleq1 | |- ( B = y -> ( B e. D <-> y e. D ) ) |
|
| 7 | 5 6 | bi2anan9 | |- ( ( A = x /\ B = y ) -> ( ( A e. C /\ B e. D ) <-> ( x e. C /\ y e. D ) ) ) |
| 8 | 4 7 | sylbi | |- ( <. A , B >. = <. x , y >. -> ( ( A e. C /\ B e. D ) <-> ( x e. C /\ y e. D ) ) ) |
| 9 | 8 | biimprcd | |- ( ( x e. C /\ y e. D ) -> ( <. A , B >. = <. x , y >. -> ( A e. C /\ B e. D ) ) ) |
| 10 | 9 | rexlimivv | |- ( E. x e. C E. y e. D <. A , B >. = <. x , y >. -> ( A e. C /\ B e. D ) ) |
| 11 | eqid | |- <. A , B >. = <. A , B >. |
|
| 12 | opeq1 | |- ( x = A -> <. x , y >. = <. A , y >. ) |
|
| 13 | 12 | eqeq2d | |- ( x = A -> ( <. A , B >. = <. x , y >. <-> <. A , B >. = <. A , y >. ) ) |
| 14 | opeq2 | |- ( y = B -> <. A , y >. = <. A , B >. ) |
|
| 15 | 14 | eqeq2d | |- ( y = B -> ( <. A , B >. = <. A , y >. <-> <. A , B >. = <. A , B >. ) ) |
| 16 | 13 15 | rspc2ev | |- ( ( A e. C /\ B e. D /\ <. A , B >. = <. A , B >. ) -> E. x e. C E. y e. D <. A , B >. = <. x , y >. ) |
| 17 | 11 16 | mp3an3 | |- ( ( A e. C /\ B e. D ) -> E. x e. C E. y e. D <. A , B >. = <. x , y >. ) |
| 18 | 10 17 | impbii | |- ( E. x e. C E. y e. D <. A , B >. = <. x , y >. <-> ( A e. C /\ B e. D ) ) |
| 19 | 1 18 | bitri | |- ( <. A , B >. e. ( C X. D ) <-> ( A e. C /\ B e. D ) ) |