This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two finite sums. (Contributed by NM, 14-Nov-2005) (Revised by Mario Carneiro, 22-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumadd.1 | |- ( ph -> A e. Fin ) |
|
| fsumadd.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fsumadd.3 | |- ( ( ph /\ k e. A ) -> C e. CC ) |
||
| Assertion | fsumadd | |- ( ph -> sum_ k e. A ( B + C ) = ( sum_ k e. A B + sum_ k e. A C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumadd.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumadd.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | fsumadd.3 | |- ( ( ph /\ k e. A ) -> C e. CC ) |
|
| 4 | 00id | |- ( 0 + 0 ) = 0 |
|
| 5 | sum0 | |- sum_ k e. (/) B = 0 |
|
| 6 | sum0 | |- sum_ k e. (/) C = 0 |
|
| 7 | 5 6 | oveq12i | |- ( sum_ k e. (/) B + sum_ k e. (/) C ) = ( 0 + 0 ) |
| 8 | sum0 | |- sum_ k e. (/) ( B + C ) = 0 |
|
| 9 | 4 7 8 | 3eqtr4ri | |- sum_ k e. (/) ( B + C ) = ( sum_ k e. (/) B + sum_ k e. (/) C ) |
| 10 | sumeq1 | |- ( A = (/) -> sum_ k e. A ( B + C ) = sum_ k e. (/) ( B + C ) ) |
|
| 11 | sumeq1 | |- ( A = (/) -> sum_ k e. A B = sum_ k e. (/) B ) |
|
| 12 | sumeq1 | |- ( A = (/) -> sum_ k e. A C = sum_ k e. (/) C ) |
|
| 13 | 11 12 | oveq12d | |- ( A = (/) -> ( sum_ k e. A B + sum_ k e. A C ) = ( sum_ k e. (/) B + sum_ k e. (/) C ) ) |
| 14 | 9 10 13 | 3eqtr4a | |- ( A = (/) -> sum_ k e. A ( B + C ) = ( sum_ k e. A B + sum_ k e. A C ) ) |
| 15 | 14 | a1i | |- ( ph -> ( A = (/) -> sum_ k e. A ( B + C ) = ( sum_ k e. A B + sum_ k e. A C ) ) ) |
| 16 | simprl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
|
| 17 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 18 | 16 17 | eleqtrdi | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 19 | 2 | adantlr | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ k e. A ) -> B e. CC ) |
| 20 | 19 | fmpttd | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> CC ) |
| 21 | simprr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 22 | f1of | |- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
|
| 23 | 21 22 | syl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 24 | fco | |- ( ( ( k e. A |-> B ) : A --> CC /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
|
| 25 | 20 23 24 | syl2anc | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
| 26 | 25 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) e. CC ) |
| 27 | 3 | adantlr | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ k e. A ) -> C e. CC ) |
| 28 | 27 | fmpttd | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> C ) : A --> CC ) |
| 29 | fco | |- ( ( ( k e. A |-> C ) : A --> CC /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> C ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
|
| 30 | 28 23 29 | syl2anc | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> C ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
| 31 | 30 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> C ) o. f ) ` n ) e. CC ) |
| 32 | 23 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( f ` n ) e. A ) |
| 33 | ovex | |- ( B + C ) e. _V |
|
| 34 | eqid | |- ( k e. A |-> ( B + C ) ) = ( k e. A |-> ( B + C ) ) |
|
| 35 | 34 | fvmpt2 | |- ( ( k e. A /\ ( B + C ) e. _V ) -> ( ( k e. A |-> ( B + C ) ) ` k ) = ( B + C ) ) |
| 36 | 33 35 | mpan2 | |- ( k e. A -> ( ( k e. A |-> ( B + C ) ) ` k ) = ( B + C ) ) |
| 37 | 36 | adantl | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( B + C ) ) ` k ) = ( B + C ) ) |
| 38 | simpr | |- ( ( ph /\ k e. A ) -> k e. A ) |
|
| 39 | eqid | |- ( k e. A |-> B ) = ( k e. A |-> B ) |
|
| 40 | 39 | fvmpt2 | |- ( ( k e. A /\ B e. CC ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 41 | 38 2 40 | syl2anc | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 42 | eqid | |- ( k e. A |-> C ) = ( k e. A |-> C ) |
|
| 43 | 42 | fvmpt2 | |- ( ( k e. A /\ C e. CC ) -> ( ( k e. A |-> C ) ` k ) = C ) |
| 44 | 38 3 43 | syl2anc | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> C ) ` k ) = C ) |
| 45 | 41 44 | oveq12d | |- ( ( ph /\ k e. A ) -> ( ( ( k e. A |-> B ) ` k ) + ( ( k e. A |-> C ) ` k ) ) = ( B + C ) ) |
| 46 | 37 45 | eqtr4d | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( B + C ) ) ` k ) = ( ( ( k e. A |-> B ) ` k ) + ( ( k e. A |-> C ) ` k ) ) ) |
| 47 | 46 | ralrimiva | |- ( ph -> A. k e. A ( ( k e. A |-> ( B + C ) ) ` k ) = ( ( ( k e. A |-> B ) ` k ) + ( ( k e. A |-> C ) ` k ) ) ) |
| 48 | 47 | ad2antrr | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> A. k e. A ( ( k e. A |-> ( B + C ) ) ` k ) = ( ( ( k e. A |-> B ) ` k ) + ( ( k e. A |-> C ) ` k ) ) ) |
| 49 | nffvmpt1 | |- F/_ k ( ( k e. A |-> ( B + C ) ) ` ( f ` n ) ) |
|
| 50 | nffvmpt1 | |- F/_ k ( ( k e. A |-> B ) ` ( f ` n ) ) |
|
| 51 | nfcv | |- F/_ k + |
|
| 52 | nffvmpt1 | |- F/_ k ( ( k e. A |-> C ) ` ( f ` n ) ) |
|
| 53 | 50 51 52 | nfov | |- F/_ k ( ( ( k e. A |-> B ) ` ( f ` n ) ) + ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
| 54 | 49 53 | nfeq | |- F/ k ( ( k e. A |-> ( B + C ) ) ` ( f ` n ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) + ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
| 55 | fveq2 | |- ( k = ( f ` n ) -> ( ( k e. A |-> ( B + C ) ) ` k ) = ( ( k e. A |-> ( B + C ) ) ` ( f ` n ) ) ) |
|
| 56 | fveq2 | |- ( k = ( f ` n ) -> ( ( k e. A |-> B ) ` k ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 57 | fveq2 | |- ( k = ( f ` n ) -> ( ( k e. A |-> C ) ` k ) = ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
|
| 58 | 56 57 | oveq12d | |- ( k = ( f ` n ) -> ( ( ( k e. A |-> B ) ` k ) + ( ( k e. A |-> C ) ` k ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) + ( ( k e. A |-> C ) ` ( f ` n ) ) ) ) |
| 59 | 55 58 | eqeq12d | |- ( k = ( f ` n ) -> ( ( ( k e. A |-> ( B + C ) ) ` k ) = ( ( ( k e. A |-> B ) ` k ) + ( ( k e. A |-> C ) ` k ) ) <-> ( ( k e. A |-> ( B + C ) ) ` ( f ` n ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) + ( ( k e. A |-> C ) ` ( f ` n ) ) ) ) ) |
| 60 | 54 59 | rspc | |- ( ( f ` n ) e. A -> ( A. k e. A ( ( k e. A |-> ( B + C ) ) ` k ) = ( ( ( k e. A |-> B ) ` k ) + ( ( k e. A |-> C ) ` k ) ) -> ( ( k e. A |-> ( B + C ) ) ` ( f ` n ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) + ( ( k e. A |-> C ) ` ( f ` n ) ) ) ) ) |
| 61 | 32 48 60 | sylc | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( k e. A |-> ( B + C ) ) ` ( f ` n ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) + ( ( k e. A |-> C ) ` ( f ` n ) ) ) ) |
| 62 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( B + C ) ) o. f ) ` n ) = ( ( k e. A |-> ( B + C ) ) ` ( f ` n ) ) ) |
|
| 63 | 23 62 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( B + C ) ) o. f ) ` n ) = ( ( k e. A |-> ( B + C ) ) ` ( f ` n ) ) ) |
| 64 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 65 | 23 64 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 66 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> C ) o. f ) ` n ) = ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
|
| 67 | 23 66 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> C ) o. f ) ` n ) = ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
| 68 | 65 67 | oveq12d | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( ( k e. A |-> B ) o. f ) ` n ) + ( ( ( k e. A |-> C ) o. f ) ` n ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) + ( ( k e. A |-> C ) ` ( f ` n ) ) ) ) |
| 69 | 61 63 68 | 3eqtr4d | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( B + C ) ) o. f ) ` n ) = ( ( ( ( k e. A |-> B ) o. f ) ` n ) + ( ( ( k e. A |-> C ) o. f ) ` n ) ) ) |
| 70 | 18 26 31 69 | seradd | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( seq 1 ( + , ( ( k e. A |-> ( B + C ) ) o. f ) ) ` ( # ` A ) ) = ( ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) + ( seq 1 ( + , ( ( k e. A |-> C ) o. f ) ) ` ( # ` A ) ) ) ) |
| 71 | fveq2 | |- ( m = ( f ` n ) -> ( ( k e. A |-> ( B + C ) ) ` m ) = ( ( k e. A |-> ( B + C ) ) ` ( f ` n ) ) ) |
|
| 72 | 19 27 | addcld | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ k e. A ) -> ( B + C ) e. CC ) |
| 73 | 72 | fmpttd | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> ( B + C ) ) : A --> CC ) |
| 74 | 73 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> ( B + C ) ) ` m ) e. CC ) |
| 75 | 71 16 21 74 63 | fsum | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> ( B + C ) ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> ( B + C ) ) o. f ) ) ` ( # ` A ) ) ) |
| 76 | fveq2 | |- ( m = ( f ` n ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 77 | 20 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
| 78 | 76 16 21 77 65 | fsum | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 79 | fveq2 | |- ( m = ( f ` n ) -> ( ( k e. A |-> C ) ` m ) = ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
|
| 80 | 28 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> C ) ` m ) e. CC ) |
| 81 | 79 16 21 80 67 | fsum | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> C ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> C ) o. f ) ) ` ( # ` A ) ) ) |
| 82 | 78 81 | oveq12d | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( sum_ m e. A ( ( k e. A |-> B ) ` m ) + sum_ m e. A ( ( k e. A |-> C ) ` m ) ) = ( ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) + ( seq 1 ( + , ( ( k e. A |-> C ) o. f ) ) ` ( # ` A ) ) ) ) |
| 83 | 70 75 82 | 3eqtr4d | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> ( B + C ) ) ` m ) = ( sum_ m e. A ( ( k e. A |-> B ) ` m ) + sum_ m e. A ( ( k e. A |-> C ) ` m ) ) ) |
| 84 | sumfc | |- sum_ m e. A ( ( k e. A |-> ( B + C ) ) ` m ) = sum_ k e. A ( B + C ) |
|
| 85 | sumfc | |- sum_ m e. A ( ( k e. A |-> B ) ` m ) = sum_ k e. A B |
|
| 86 | sumfc | |- sum_ m e. A ( ( k e. A |-> C ) ` m ) = sum_ k e. A C |
|
| 87 | 85 86 | oveq12i | |- ( sum_ m e. A ( ( k e. A |-> B ) ` m ) + sum_ m e. A ( ( k e. A |-> C ) ` m ) ) = ( sum_ k e. A B + sum_ k e. A C ) |
| 88 | 83 84 87 | 3eqtr3g | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ k e. A ( B + C ) = ( sum_ k e. A B + sum_ k e. A C ) ) |
| 89 | 88 | expr | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A ( B + C ) = ( sum_ k e. A B + sum_ k e. A C ) ) ) |
| 90 | 89 | exlimdv | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A ( B + C ) = ( sum_ k e. A B + sum_ k e. A C ) ) ) |
| 91 | 90 | expimpd | |- ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A ( B + C ) = ( sum_ k e. A B + sum_ k e. A C ) ) ) |
| 92 | fz1f1o | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
|
| 93 | 1 92 | syl | |- ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 94 | 15 91 93 | mpjaod | |- ( ph -> sum_ k e. A ( B + C ) = ( sum_ k e. A B + sum_ k e. A C ) ) |