This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnnz1 | |- ( N e. NN <-> ( N e. ZZ /\ 1 <_ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 2 | nnge1 | |- ( N e. NN -> 1 <_ N ) |
|
| 3 | 1 2 | jca | |- ( N e. NN -> ( N e. ZZ /\ 1 <_ N ) ) |
| 4 | 0lt1 | |- 0 < 1 |
|
| 5 | 0re | |- 0 e. RR |
|
| 6 | 1re | |- 1 e. RR |
|
| 7 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 8 | ltletr | |- ( ( 0 e. RR /\ 1 e. RR /\ N e. RR ) -> ( ( 0 < 1 /\ 1 <_ N ) -> 0 < N ) ) |
|
| 9 | 5 6 7 8 | mp3an12i | |- ( N e. ZZ -> ( ( 0 < 1 /\ 1 <_ N ) -> 0 < N ) ) |
| 10 | 4 9 | mpani | |- ( N e. ZZ -> ( 1 <_ N -> 0 < N ) ) |
| 11 | 10 | imdistani | |- ( ( N e. ZZ /\ 1 <_ N ) -> ( N e. ZZ /\ 0 < N ) ) |
| 12 | elnnz | |- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
|
| 13 | 11 12 | sylibr | |- ( ( N e. ZZ /\ 1 <_ N ) -> N e. NN ) |
| 14 | 3 13 | impbii | |- ( N e. NN <-> ( N e. ZZ /\ 1 <_ N ) ) |