This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumsup.1 | |- Z = ( ZZ>= ` M ) |
|
| isumsup.2 | |- G = seq M ( + , F ) |
||
| isumsup.3 | |- ( ph -> M e. ZZ ) |
||
| isumsup.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isumsup.5 | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
||
| isumsup.6 | |- ( ( ph /\ k e. Z ) -> 0 <_ A ) |
||
| isumsup.7 | |- ( ph -> E. x e. RR A. j e. Z ( G ` j ) <_ x ) |
||
| Assertion | isumsup2 | |- ( ph -> G ~~> sup ( ran G , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumsup.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumsup.2 | |- G = seq M ( + , F ) |
|
| 3 | isumsup.3 | |- ( ph -> M e. ZZ ) |
|
| 4 | isumsup.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 5 | isumsup.5 | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
|
| 6 | isumsup.6 | |- ( ( ph /\ k e. Z ) -> 0 <_ A ) |
|
| 7 | isumsup.7 | |- ( ph -> E. x e. RR A. j e. Z ( G ` j ) <_ x ) |
|
| 8 | 4 5 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 9 | 1 3 8 | serfre | |- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 10 | 2 | feq1i | |- ( G : Z --> RR <-> seq M ( + , F ) : Z --> RR ) |
| 11 | 9 10 | sylibr | |- ( ph -> G : Z --> RR ) |
| 12 | simpr | |- ( ( ph /\ j e. Z ) -> j e. Z ) |
|
| 13 | 12 1 | eleqtrdi | |- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 14 | eluzelz | |- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
|
| 15 | uzid | |- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
|
| 16 | peano2uz | |- ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
|
| 17 | 13 14 15 16 | 4syl | |- ( ( ph /\ j e. Z ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
| 18 | simpl | |- ( ( ph /\ j e. Z ) -> ph ) |
|
| 19 | elfzuz | |- ( k e. ( M ... ( j + 1 ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 20 | 19 1 | eleqtrrdi | |- ( k e. ( M ... ( j + 1 ) ) -> k e. Z ) |
| 21 | 18 20 8 | syl2an | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... ( j + 1 ) ) ) -> ( F ` k ) e. RR ) |
| 22 | 1 | peano2uzs | |- ( j e. Z -> ( j + 1 ) e. Z ) |
| 23 | 22 | adantl | |- ( ( ph /\ j e. Z ) -> ( j + 1 ) e. Z ) |
| 24 | elfzuz | |- ( k e. ( ( j + 1 ) ... ( j + 1 ) ) -> k e. ( ZZ>= ` ( j + 1 ) ) ) |
|
| 25 | 1 | uztrn2 | |- ( ( ( j + 1 ) e. Z /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. Z ) |
| 26 | 23 24 25 | syl2an | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> k e. Z ) |
| 27 | 6 4 | breqtrrd | |- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
| 28 | 27 | adantlr | |- ( ( ( ph /\ j e. Z ) /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
| 29 | 26 28 | syldan | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> 0 <_ ( F ` k ) ) |
| 30 | 13 17 21 29 | sermono | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) <_ ( seq M ( + , F ) ` ( j + 1 ) ) ) |
| 31 | 2 | fveq1i | |- ( G ` j ) = ( seq M ( + , F ) ` j ) |
| 32 | 2 | fveq1i | |- ( G ` ( j + 1 ) ) = ( seq M ( + , F ) ` ( j + 1 ) ) |
| 33 | 30 31 32 | 3brtr4g | |- ( ( ph /\ j e. Z ) -> ( G ` j ) <_ ( G ` ( j + 1 ) ) ) |
| 34 | 1 3 11 33 7 | climsup | |- ( ph -> G ~~> sup ( ran G , RR , < ) ) |