This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence builder function is a function. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqfn | |- ( M e. ZZ -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeq1 | |- ( M = if ( M e. ZZ , M , 0 ) -> seq M ( .+ , F ) = seq if ( M e. ZZ , M , 0 ) ( .+ , F ) ) |
|
| 2 | fveq2 | |- ( M = if ( M e. ZZ , M , 0 ) -> ( ZZ>= ` M ) = ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ) |
|
| 3 | 1 2 | fneq12d | |- ( M = if ( M e. ZZ , M , 0 ) -> ( seq M ( .+ , F ) Fn ( ZZ>= ` M ) <-> seq if ( M e. ZZ , M , 0 ) ( .+ , F ) Fn ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ) ) |
| 4 | 0z | |- 0 e. ZZ |
|
| 5 | 4 | elimel | |- if ( M e. ZZ , M , 0 ) e. ZZ |
| 6 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( M e. ZZ , M , 0 ) ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( M e. ZZ , M , 0 ) ) |` _om ) |
|
| 7 | fvex | |- ( F ` if ( M e. ZZ , M , 0 ) ) e. _V |
|
| 8 | eqid | |- ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) >. ) , <. if ( M e. ZZ , M , 0 ) , ( F ` if ( M e. ZZ , M , 0 ) ) >. ) |` _om ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) >. ) , <. if ( M e. ZZ , M , 0 ) , ( F ` if ( M e. ZZ , M , 0 ) ) >. ) |` _om ) |
|
| 9 | 8 | seqval | |- seq if ( M e. ZZ , M , 0 ) ( .+ , F ) = ran ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z + 1 ) ) ) ) y ) >. ) , <. if ( M e. ZZ , M , 0 ) , ( F ` if ( M e. ZZ , M , 0 ) ) >. ) |` _om ) |
| 10 | 5 6 7 8 9 | uzrdgfni | |- seq if ( M e. ZZ , M , 0 ) ( .+ , F ) Fn ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) |
| 11 | 3 10 | dedth | |- ( M e. ZZ -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |