This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovolfs.1 | |- G = ( ( abs o. - ) o. F ) |
|
| Assertion | ovolfsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G : NN --> ( 0 [,) +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolfs.1 | |- G = ( ( abs o. - ) o. F ) |
|
| 2 | absf | |- abs : CC --> RR |
|
| 3 | subf | |- - : ( CC X. CC ) --> CC |
|
| 4 | fco | |- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
|
| 5 | 2 3 4 | mp2an | |- ( abs o. - ) : ( CC X. CC ) --> RR |
| 6 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 7 | ax-resscn | |- RR C_ CC |
|
| 8 | xpss12 | |- ( ( RR C_ CC /\ RR C_ CC ) -> ( RR X. RR ) C_ ( CC X. CC ) ) |
|
| 9 | 7 7 8 | mp2an | |- ( RR X. RR ) C_ ( CC X. CC ) |
| 10 | 6 9 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( CC X. CC ) |
| 11 | fss | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( CC X. CC ) ) -> F : NN --> ( CC X. CC ) ) |
|
| 12 | 10 11 | mpan2 | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F : NN --> ( CC X. CC ) ) |
| 13 | fco | |- ( ( ( abs o. - ) : ( CC X. CC ) --> RR /\ F : NN --> ( CC X. CC ) ) -> ( ( abs o. - ) o. F ) : NN --> RR ) |
|
| 14 | 5 12 13 | sylancr | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. F ) : NN --> RR ) |
| 15 | 1 | feq1i | |- ( G : NN --> RR <-> ( ( abs o. - ) o. F ) : NN --> RR ) |
| 16 | 14 15 | sylibr | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G : NN --> RR ) |
| 17 | 16 | ffnd | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G Fn NN ) |
| 18 | 16 | ffvelcdmda | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( G ` x ) e. RR ) |
| 19 | ovolfcl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR /\ ( 1st ` ( F ` x ) ) <_ ( 2nd ` ( F ` x ) ) ) ) |
|
| 20 | subge0 | |- ( ( ( 2nd ` ( F ` x ) ) e. RR /\ ( 1st ` ( F ` x ) ) e. RR ) -> ( 0 <_ ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) <-> ( 1st ` ( F ` x ) ) <_ ( 2nd ` ( F ` x ) ) ) ) |
|
| 21 | 20 | ancoms | |- ( ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR ) -> ( 0 <_ ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) <-> ( 1st ` ( F ` x ) ) <_ ( 2nd ` ( F ` x ) ) ) ) |
| 22 | 21 | biimp3ar | |- ( ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR /\ ( 1st ` ( F ` x ) ) <_ ( 2nd ` ( F ` x ) ) ) -> 0 <_ ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 23 | 19 22 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> 0 <_ ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 24 | 1 | ovolfsval | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( G ` x ) = ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 25 | 23 24 | breqtrrd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> 0 <_ ( G ` x ) ) |
| 26 | elrege0 | |- ( ( G ` x ) e. ( 0 [,) +oo ) <-> ( ( G ` x ) e. RR /\ 0 <_ ( G ` x ) ) ) |
|
| 27 | 18 25 26 | sylanbrc | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( G ` x ) e. ( 0 [,) +oo ) ) |
| 28 | 27 | ralrimiva | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> A. x e. NN ( G ` x ) e. ( 0 [,) +oo ) ) |
| 29 | ffnfv | |- ( G : NN --> ( 0 [,) +oo ) <-> ( G Fn NN /\ A. x e. NN ( G ` x ) e. ( 0 [,) +oo ) ) ) |
|
| 30 | 17 28 29 | sylanbrc | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G : NN --> ( 0 [,) +oo ) ) |