This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfi1fseq . (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| mbfi1fseq.3 | |- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
||
| mbfi1fseq.4 | |- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
||
| Assertion | mbfi1fseqlem3 | |- ( ( ph /\ A e. NN ) -> ( G ` A ) : RR --> ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 3 | mbfi1fseq.3 | |- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
|
| 4 | mbfi1fseq.4 | |- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
|
| 5 | 1 2 3 4 | mbfi1fseqlem2 | |- ( A e. NN -> ( G ` A ) = ( x e. RR |-> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) ) ) |
| 6 | 5 | adantl | |- ( ( ph /\ A e. NN ) -> ( G ` A ) = ( x e. RR |-> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) ) ) |
| 7 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 8 | simpr | |- ( ( m e. NN /\ y e. RR ) -> y e. RR ) |
|
| 9 | ffvelcdm | |- ( ( F : RR --> ( 0 [,) +oo ) /\ y e. RR ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
|
| 10 | 2 8 9 | syl2an | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
| 11 | 7 10 | sselid | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. RR ) |
| 12 | 2nn | |- 2 e. NN |
|
| 13 | nnnn0 | |- ( m e. NN -> m e. NN0 ) |
|
| 14 | nnexpcl | |- ( ( 2 e. NN /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) |
|
| 15 | 12 13 14 | sylancr | |- ( m e. NN -> ( 2 ^ m ) e. NN ) |
| 16 | 15 | ad2antrl | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. NN ) |
| 17 | 16 | nnred | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. RR ) |
| 18 | 11 17 | remulcld | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( F ` y ) x. ( 2 ^ m ) ) e. RR ) |
| 19 | reflcl | |- ( ( ( F ` y ) x. ( 2 ^ m ) ) e. RR -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
|
| 20 | 18 19 | syl | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
| 21 | 20 16 | nndivred | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
| 22 | 21 | ralrimivva | |- ( ph -> A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
| 23 | 3 | fmpo | |- ( A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR <-> J : ( NN X. RR ) --> RR ) |
| 24 | 22 23 | sylib | |- ( ph -> J : ( NN X. RR ) --> RR ) |
| 25 | fovcdm | |- ( ( J : ( NN X. RR ) --> RR /\ A e. NN /\ x e. RR ) -> ( A J x ) e. RR ) |
|
| 26 | 24 25 | syl3an1 | |- ( ( ph /\ A e. NN /\ x e. RR ) -> ( A J x ) e. RR ) |
| 27 | 26 | 3expa | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A J x ) e. RR ) |
| 28 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 29 | 28 | ad2antlr | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> A e. RR ) |
| 30 | nnnn0 | |- ( A e. NN -> A e. NN0 ) |
|
| 31 | nnexpcl | |- ( ( 2 e. NN /\ A e. NN0 ) -> ( 2 ^ A ) e. NN ) |
|
| 32 | 12 30 31 | sylancr | |- ( A e. NN -> ( 2 ^ A ) e. NN ) |
| 33 | 32 | ad2antlr | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. NN ) |
| 34 | nnre | |- ( ( 2 ^ A ) e. NN -> ( 2 ^ A ) e. RR ) |
|
| 35 | nngt0 | |- ( ( 2 ^ A ) e. NN -> 0 < ( 2 ^ A ) ) |
|
| 36 | 34 35 | jca | |- ( ( 2 ^ A ) e. NN -> ( ( 2 ^ A ) e. RR /\ 0 < ( 2 ^ A ) ) ) |
| 37 | 33 36 | syl | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( 2 ^ A ) e. RR /\ 0 < ( 2 ^ A ) ) ) |
| 38 | lemul1 | |- ( ( ( A J x ) e. RR /\ A e. RR /\ ( ( 2 ^ A ) e. RR /\ 0 < ( 2 ^ A ) ) ) -> ( ( A J x ) <_ A <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
|
| 39 | 27 29 37 38 | syl3anc | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( A J x ) <_ A <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
| 40 | 39 | biimpa | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) |
| 41 | simpr | |- ( ( m = A /\ y = x ) -> y = x ) |
|
| 42 | 41 | fveq2d | |- ( ( m = A /\ y = x ) -> ( F ` y ) = ( F ` x ) ) |
| 43 | simpl | |- ( ( m = A /\ y = x ) -> m = A ) |
|
| 44 | 43 | oveq2d | |- ( ( m = A /\ y = x ) -> ( 2 ^ m ) = ( 2 ^ A ) ) |
| 45 | 42 44 | oveq12d | |- ( ( m = A /\ y = x ) -> ( ( F ` y ) x. ( 2 ^ m ) ) = ( ( F ` x ) x. ( 2 ^ A ) ) ) |
| 46 | 45 | fveq2d | |- ( ( m = A /\ y = x ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) ) |
| 47 | 46 44 | oveq12d | |- ( ( m = A /\ y = x ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) ) |
| 48 | ovex | |- ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) e. _V |
|
| 49 | 47 3 48 | ovmpoa | |- ( ( A e. NN /\ x e. RR ) -> ( A J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) ) |
| 50 | 49 | ad4ant23 | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) ) |
| 51 | 50 | oveq1d | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) = ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) x. ( 2 ^ A ) ) ) |
| 52 | 2 | adantr | |- ( ( ph /\ A e. NN ) -> F : RR --> ( 0 [,) +oo ) ) |
| 53 | 52 | ffvelcdmda | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 54 | elrege0 | |- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
|
| 55 | 53 54 | sylib | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 56 | 55 | simpld | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 57 | 33 | nnred | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. RR ) |
| 58 | 56 57 | remulcld | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( F ` x ) x. ( 2 ^ A ) ) e. RR ) |
| 59 | 33 | nnnn0d | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. NN0 ) |
| 60 | 59 | nn0ge0d | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 <_ ( 2 ^ A ) ) |
| 61 | mulge0 | |- ( ( ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) /\ ( ( 2 ^ A ) e. RR /\ 0 <_ ( 2 ^ A ) ) ) -> 0 <_ ( ( F ` x ) x. ( 2 ^ A ) ) ) |
|
| 62 | 55 57 60 61 | syl12anc | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 <_ ( ( F ` x ) x. ( 2 ^ A ) ) ) |
| 63 | flge0nn0 | |- ( ( ( ( F ` x ) x. ( 2 ^ A ) ) e. RR /\ 0 <_ ( ( F ` x ) x. ( 2 ^ A ) ) ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. NN0 ) |
|
| 64 | 58 62 63 | syl2anc | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. NN0 ) |
| 65 | 64 | adantr | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. NN0 ) |
| 66 | 65 | nn0cnd | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. CC ) |
| 67 | 33 | adantr | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( 2 ^ A ) e. NN ) |
| 68 | 67 | nncnd | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( 2 ^ A ) e. CC ) |
| 69 | 67 | nnne0d | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( 2 ^ A ) =/= 0 ) |
| 70 | 66 68 69 | divcan1d | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) x. ( 2 ^ A ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) ) |
| 71 | 51 70 | eqtrd | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) ) |
| 72 | 71 65 | eqeltrd | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) e. NN0 ) |
| 73 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 74 | 72 73 | eleqtrdi | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) ) |
| 75 | nnmulcl | |- ( ( A e. NN /\ ( 2 ^ A ) e. NN ) -> ( A x. ( 2 ^ A ) ) e. NN ) |
|
| 76 | 32 75 | mpdan | |- ( A e. NN -> ( A x. ( 2 ^ A ) ) e. NN ) |
| 77 | 76 | ad2antlr | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. NN ) |
| 78 | 77 | adantr | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A x. ( 2 ^ A ) ) e. NN ) |
| 79 | 78 | nnzd | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A x. ( 2 ^ A ) ) e. ZZ ) |
| 80 | elfz5 | |- ( ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) /\ ( A x. ( 2 ^ A ) ) e. ZZ ) -> ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
|
| 81 | 74 79 80 | syl2anc | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
| 82 | 40 81 | mpbird | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 83 | oveq1 | |- ( m = ( ( A J x ) x. ( 2 ^ A ) ) -> ( m / ( 2 ^ A ) ) = ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
|
| 84 | eqid | |- ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) = ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) |
|
| 85 | ovex | |- ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) e. _V |
|
| 86 | 83 84 85 | fvmpt | |- ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) = ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
| 87 | 82 86 | syl | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) = ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
| 88 | 27 | adantr | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) e. RR ) |
| 89 | 88 | recnd | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) e. CC ) |
| 90 | 89 68 69 | divcan4d | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) = ( A J x ) ) |
| 91 | 87 90 | eqtrd | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) = ( A J x ) ) |
| 92 | elfznn0 | |- ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> m e. NN0 ) |
|
| 93 | 92 | nn0red | |- ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> m e. RR ) |
| 94 | 32 | adantl | |- ( ( ph /\ A e. NN ) -> ( 2 ^ A ) e. NN ) |
| 95 | nndivre | |- ( ( m e. RR /\ ( 2 ^ A ) e. NN ) -> ( m / ( 2 ^ A ) ) e. RR ) |
|
| 96 | 93 94 95 | syl2anr | |- ( ( ( ph /\ A e. NN ) /\ m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( m / ( 2 ^ A ) ) e. RR ) |
| 97 | 96 | fmpttd | |- ( ( ph /\ A e. NN ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) : ( 0 ... ( A x. ( 2 ^ A ) ) ) --> RR ) |
| 98 | 97 | ffnd | |- ( ( ph /\ A e. NN ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 99 | 98 | adantr | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 100 | 99 | adantr | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 101 | fnfvelrn | |- ( ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) /\ ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
|
| 102 | 100 82 101 | syl2anc | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 103 | 91 102 | eqeltrrd | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 104 | 77 | nnnn0d | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. NN0 ) |
| 105 | 104 73 | eleqtrdi | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) ) |
| 106 | eluzfz2 | |- ( ( A x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) -> ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
|
| 107 | 105 106 | syl | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 108 | oveq1 | |- ( m = ( A x. ( 2 ^ A ) ) -> ( m / ( 2 ^ A ) ) = ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
|
| 109 | ovex | |- ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) e. _V |
|
| 110 | 108 84 109 | fvmpt | |- ( ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) = ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
| 111 | 107 110 | syl | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) = ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
| 112 | 29 | recnd | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> A e. CC ) |
| 113 | 33 | nncnd | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. CC ) |
| 114 | 33 | nnne0d | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) =/= 0 ) |
| 115 | 112 113 114 | divcan4d | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) = A ) |
| 116 | 111 115 | eqtrd | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) = A ) |
| 117 | fnfvelrn | |- ( ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) /\ ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
|
| 118 | 99 107 117 | syl2anc | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 119 | 116 118 | eqeltrrd | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> A e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 120 | 119 | adantr | |- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ -. ( A J x ) <_ A ) -> A e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 121 | 103 120 | ifclda | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> if ( ( A J x ) <_ A , ( A J x ) , A ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 122 | eluzfz1 | |- ( ( A x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
|
| 123 | 105 122 | syl | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 124 | oveq1 | |- ( m = 0 -> ( m / ( 2 ^ A ) ) = ( 0 / ( 2 ^ A ) ) ) |
|
| 125 | ovex | |- ( 0 / ( 2 ^ A ) ) e. _V |
|
| 126 | 124 84 125 | fvmpt | |- ( 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) = ( 0 / ( 2 ^ A ) ) ) |
| 127 | 123 126 | syl | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) = ( 0 / ( 2 ^ A ) ) ) |
| 128 | nncn | |- ( ( 2 ^ A ) e. NN -> ( 2 ^ A ) e. CC ) |
|
| 129 | nnne0 | |- ( ( 2 ^ A ) e. NN -> ( 2 ^ A ) =/= 0 ) |
|
| 130 | 128 129 | div0d | |- ( ( 2 ^ A ) e. NN -> ( 0 / ( 2 ^ A ) ) = 0 ) |
| 131 | 33 130 | syl | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 0 / ( 2 ^ A ) ) = 0 ) |
| 132 | 127 131 | eqtrd | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) = 0 ) |
| 133 | fnfvelrn | |- ( ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) /\ 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
|
| 134 | 99 123 133 | syl2anc | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 135 | 132 134 | eqeltrrd | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 136 | 121 135 | ifcld | |- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 137 | 6 136 | fmpt3d | |- ( ( ph /\ A e. NN ) -> ( G ` A ) : RR --> ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |