This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to floor. (Contributed by NM, 11-Mar-2005) (Revised by Mario Carneiro, 2-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flbi | |- ( ( A e. RR /\ B e. ZZ ) -> ( ( |_ ` A ) = B <-> ( B <_ A /\ A < ( B + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flval | |- ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
|
| 2 | 1 | eqeq1d | |- ( A e. RR -> ( ( |_ ` A ) = B <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) ) |
| 3 | 2 | adantr | |- ( ( A e. RR /\ B e. ZZ ) -> ( ( |_ ` A ) = B <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) ) |
| 4 | rebtwnz | |- ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) |
|
| 5 | breq1 | |- ( x = B -> ( x <_ A <-> B <_ A ) ) |
|
| 6 | oveq1 | |- ( x = B -> ( x + 1 ) = ( B + 1 ) ) |
|
| 7 | 6 | breq2d | |- ( x = B -> ( A < ( x + 1 ) <-> A < ( B + 1 ) ) ) |
| 8 | 5 7 | anbi12d | |- ( x = B -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( B <_ A /\ A < ( B + 1 ) ) ) ) |
| 9 | 8 | riota2 | |- ( ( B e. ZZ /\ E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) -> ( ( B <_ A /\ A < ( B + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) ) |
| 10 | 4 9 | sylan2 | |- ( ( B e. ZZ /\ A e. RR ) -> ( ( B <_ A /\ A < ( B + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) ) |
| 11 | 10 | ancoms | |- ( ( A e. RR /\ B e. ZZ ) -> ( ( B <_ A /\ A < ( B + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) ) |
| 12 | 3 11 | bitr4d | |- ( ( A e. RR /\ B e. ZZ ) -> ( ( |_ ` A ) = B <-> ( B <_ A /\ A < ( B + 1 ) ) ) ) |