This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A characterization of measurability in terms of simple functions (this is an if and only if for nonnegative functions, although we don't prove it). Any nonnegative measurable function is the limit of an increasing sequence of nonnegative simple functions. This proof is an example of a poor de Bruijn factor - the formalized proof is much longer than an average hand proof, which usually just describes the function G and "leaves the details as an exercise to the reader". (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| Assertion | mbfi1fseq | |- ( ph -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 3 | oveq2 | |- ( j = k -> ( 2 ^ j ) = ( 2 ^ k ) ) |
|
| 4 | 3 | oveq2d | |- ( j = k -> ( ( F ` z ) x. ( 2 ^ j ) ) = ( ( F ` z ) x. ( 2 ^ k ) ) ) |
| 5 | 4 | fveq2d | |- ( j = k -> ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) = ( |_ ` ( ( F ` z ) x. ( 2 ^ k ) ) ) ) |
| 6 | 5 3 | oveq12d | |- ( j = k -> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) = ( ( |_ ` ( ( F ` z ) x. ( 2 ^ k ) ) ) / ( 2 ^ k ) ) ) |
| 7 | fveq2 | |- ( z = y -> ( F ` z ) = ( F ` y ) ) |
|
| 8 | 7 | fvoveq1d | |- ( z = y -> ( |_ ` ( ( F ` z ) x. ( 2 ^ k ) ) ) = ( |_ ` ( ( F ` y ) x. ( 2 ^ k ) ) ) ) |
| 9 | 8 | oveq1d | |- ( z = y -> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ k ) ) ) / ( 2 ^ k ) ) = ( ( |_ ` ( ( F ` y ) x. ( 2 ^ k ) ) ) / ( 2 ^ k ) ) ) |
| 10 | 6 9 | cbvmpov | |- ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) = ( k e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ k ) ) ) / ( 2 ^ k ) ) ) |
| 11 | eleq1w | |- ( y = x -> ( y e. ( -u m [,] m ) <-> x e. ( -u m [,] m ) ) ) |
|
| 12 | oveq2 | |- ( y = x -> ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) = ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) ) |
|
| 13 | 12 | breq1d | |- ( y = x -> ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) <_ m <-> ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ m ) ) |
| 14 | 13 12 | ifbieq1d | |- ( y = x -> if ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) <_ m , ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) , m ) = if ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ m , ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) , m ) ) |
| 15 | 11 14 | ifbieq1d | |- ( y = x -> if ( y e. ( -u m [,] m ) , if ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) <_ m , ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) , m ) , 0 ) = if ( x e. ( -u m [,] m ) , if ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ m , ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) , m ) , 0 ) ) |
| 16 | 15 | cbvmptv | |- ( y e. RR |-> if ( y e. ( -u m [,] m ) , if ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) <_ m , ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) , m ) , 0 ) ) = ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ m , ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) , m ) , 0 ) ) |
| 17 | negeq | |- ( m = k -> -u m = -u k ) |
|
| 18 | id | |- ( m = k -> m = k ) |
|
| 19 | 17 18 | oveq12d | |- ( m = k -> ( -u m [,] m ) = ( -u k [,] k ) ) |
| 20 | 19 | eleq2d | |- ( m = k -> ( x e. ( -u m [,] m ) <-> x e. ( -u k [,] k ) ) ) |
| 21 | oveq1 | |- ( m = k -> ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) = ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) ) |
|
| 22 | 21 18 | breq12d | |- ( m = k -> ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ m <-> ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ k ) ) |
| 23 | 22 21 18 | ifbieq12d | |- ( m = k -> if ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ m , ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) , m ) = if ( ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ k , ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) , k ) ) |
| 24 | 20 23 | ifbieq1d | |- ( m = k -> if ( x e. ( -u m [,] m ) , if ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ m , ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) , m ) , 0 ) = if ( x e. ( -u k [,] k ) , if ( ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ k , ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) , k ) , 0 ) ) |
| 25 | 24 | mpteq2dv | |- ( m = k -> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ m , ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) , m ) , 0 ) ) = ( x e. RR |-> if ( x e. ( -u k [,] k ) , if ( ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ k , ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) , k ) , 0 ) ) ) |
| 26 | 16 25 | eqtrid | |- ( m = k -> ( y e. RR |-> if ( y e. ( -u m [,] m ) , if ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) <_ m , ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) , m ) , 0 ) ) = ( x e. RR |-> if ( x e. ( -u k [,] k ) , if ( ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ k , ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) , k ) , 0 ) ) ) |
| 27 | 26 | cbvmptv | |- ( m e. NN |-> ( y e. RR |-> if ( y e. ( -u m [,] m ) , if ( ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) <_ m , ( m ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) y ) , m ) , 0 ) ) ) = ( k e. NN |-> ( x e. RR |-> if ( x e. ( -u k [,] k ) , if ( ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) <_ k , ( k ( j e. NN , z e. RR |-> ( ( |_ ` ( ( F ` z ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) x ) , k ) , 0 ) ) ) |
| 28 | 1 2 10 27 | mbfi1fseqlem6 | |- ( ph -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) ) ) |