This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expansion of membership in an intersection of two classes. Theorem 12 of Suppes p. 25. (Contributed by NM, 29-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elin | |- ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. ( B i^i C ) -> A e. _V ) |
|
| 2 | elex | |- ( A e. C -> A e. _V ) |
|
| 3 | 2 | adantl | |- ( ( A e. B /\ A e. C ) -> A e. _V ) |
| 4 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 5 | eleq1 | |- ( x = A -> ( x e. C <-> A e. C ) ) |
|
| 6 | 4 5 | anbi12d | |- ( x = A -> ( ( x e. B /\ x e. C ) <-> ( A e. B /\ A e. C ) ) ) |
| 7 | df-in | |- ( B i^i C ) = { x | ( x e. B /\ x e. C ) } |
|
| 8 | 6 7 | elab2g | |- ( A e. _V -> ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) ) ) |
| 9 | 1 3 8 | pm5.21nii | |- ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) ) |