This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed real interval has finite volume. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccvolcl | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,] B ) ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccmbl | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) |
|
| 2 | mblvol | |- ( ( A [,] B ) e. dom vol -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
|
| 3 | 1 2 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
| 4 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 5 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 6 | icc0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 8 | 7 | biimpar | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( A [,] B ) = (/) ) |
| 9 | fveq2 | |- ( ( A [,] B ) = (/) -> ( vol* ` ( A [,] B ) ) = ( vol* ` (/) ) ) |
|
| 10 | ovol0 | |- ( vol* ` (/) ) = 0 |
|
| 11 | 9 10 | eqtrdi | |- ( ( A [,] B ) = (/) -> ( vol* ` ( A [,] B ) ) = 0 ) |
| 12 | 0re | |- 0 e. RR |
|
| 13 | 11 12 | eqeltrdi | |- ( ( A [,] B ) = (/) -> ( vol* ` ( A [,] B ) ) e. RR ) |
| 14 | 8 13 | syl | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol* ` ( A [,] B ) ) e. RR ) |
| 15 | ovolicc | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |
|
| 16 | 15 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |
| 17 | resubcl | |- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
|
| 18 | 17 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 19 | 18 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( B - A ) e. RR ) |
| 20 | 16 19 | eqeltrd | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) e. RR ) |
| 21 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 22 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 23 | 14 20 21 22 | ltlecasei | |- ( ( A e. RR /\ B e. RR ) -> ( vol* ` ( A [,] B ) ) e. RR ) |
| 24 | 3 23 | eqeltrd | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,] B ) ) e. RR ) |