This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccmbl | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 2 | dfss4 | |- ( ( A [,] B ) C_ RR <-> ( RR \ ( RR \ ( A [,] B ) ) ) = ( A [,] B ) ) |
|
| 3 | 1 2 | sylib | |- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( RR \ ( A [,] B ) ) ) = ( A [,] B ) ) |
| 4 | difreicc | |- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) = ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) |
|
| 5 | ioombl | |- ( -oo (,) A ) e. dom vol |
|
| 6 | ioombl | |- ( B (,) +oo ) e. dom vol |
|
| 7 | unmbl | |- ( ( ( -oo (,) A ) e. dom vol /\ ( B (,) +oo ) e. dom vol ) -> ( ( -oo (,) A ) u. ( B (,) +oo ) ) e. dom vol ) |
|
| 8 | 5 6 7 | mp2an | |- ( ( -oo (,) A ) u. ( B (,) +oo ) ) e. dom vol |
| 9 | 4 8 | eqeltrdi | |- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) e. dom vol ) |
| 10 | cmmbl | |- ( ( RR \ ( A [,] B ) ) e. dom vol -> ( RR \ ( RR \ ( A [,] B ) ) ) e. dom vol ) |
|
| 11 | 9 10 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( RR \ ( A [,] B ) ) ) e. dom vol ) |
| 12 | 3 11 | eqeltrrd | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) |