This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fd.1 | |- ( ph -> F : RR --> RR ) |
|
| i1fd.2 | |- ( ph -> ran F e. Fin ) |
||
| i1fd.3 | |- ( ( ph /\ x e. ( ran F \ { 0 } ) ) -> ( `' F " { x } ) e. dom vol ) |
||
| i1fd.4 | |- ( ( ph /\ x e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
||
| Assertion | i1fd | |- ( ph -> F e. dom S.1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fd.1 | |- ( ph -> F : RR --> RR ) |
|
| 2 | i1fd.2 | |- ( ph -> ran F e. Fin ) |
|
| 3 | i1fd.3 | |- ( ( ph /\ x e. ( ran F \ { 0 } ) ) -> ( `' F " { x } ) e. dom vol ) |
|
| 4 | i1fd.4 | |- ( ( ph /\ x e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
|
| 5 | 1 | ad2antrr | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> F : RR --> RR ) |
| 6 | ffun | |- ( F : RR --> RR -> Fun F ) |
|
| 7 | funcnvcnv | |- ( Fun F -> Fun `' `' F ) |
|
| 8 | imadif | |- ( Fun `' `' F -> ( `' F " ( RR \ ( RR \ x ) ) ) = ( ( `' F " RR ) \ ( `' F " ( RR \ x ) ) ) ) |
|
| 9 | 5 6 7 8 | 4syl | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " ( RR \ ( RR \ x ) ) ) = ( ( `' F " RR ) \ ( `' F " ( RR \ x ) ) ) ) |
| 10 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 11 | frn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> ran (,) C_ ~P RR ) |
|
| 12 | 10 11 | ax-mp | |- ran (,) C_ ~P RR |
| 13 | 12 | sseli | |- ( x e. ran (,) -> x e. ~P RR ) |
| 14 | 13 | elpwid | |- ( x e. ran (,) -> x C_ RR ) |
| 15 | 14 | ad2antlr | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> x C_ RR ) |
| 16 | dfss4 | |- ( x C_ RR <-> ( RR \ ( RR \ x ) ) = x ) |
|
| 17 | 15 16 | sylib | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( RR \ ( RR \ x ) ) = x ) |
| 18 | 17 | imaeq2d | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " ( RR \ ( RR \ x ) ) ) = ( `' F " x ) ) |
| 19 | 9 18 | eqtr3d | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( ( `' F " RR ) \ ( `' F " ( RR \ x ) ) ) = ( `' F " x ) ) |
| 20 | fimacnv | |- ( F : RR --> RR -> ( `' F " RR ) = RR ) |
|
| 21 | 5 20 | syl | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " RR ) = RR ) |
| 22 | rembl | |- RR e. dom vol |
|
| 23 | 21 22 | eqeltrdi | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " RR ) e. dom vol ) |
| 24 | 1 | adantr | |- ( ( ph /\ -. 0 e. y ) -> F : RR --> RR ) |
| 25 | inpreima | |- ( Fun F -> ( `' F " ( y i^i ran F ) ) = ( ( `' F " y ) i^i ( `' F " ran F ) ) ) |
|
| 26 | iunid | |- U_ x e. ( y i^i ran F ) { x } = ( y i^i ran F ) |
|
| 27 | 26 | imaeq2i | |- ( `' F " U_ x e. ( y i^i ran F ) { x } ) = ( `' F " ( y i^i ran F ) ) |
| 28 | imaiun | |- ( `' F " U_ x e. ( y i^i ran F ) { x } ) = U_ x e. ( y i^i ran F ) ( `' F " { x } ) |
|
| 29 | 27 28 | eqtr3i | |- ( `' F " ( y i^i ran F ) ) = U_ x e. ( y i^i ran F ) ( `' F " { x } ) |
| 30 | cnvimass | |- ( `' F " y ) C_ dom F |
|
| 31 | cnvimarndm | |- ( `' F " ran F ) = dom F |
|
| 32 | 30 31 | sseqtrri | |- ( `' F " y ) C_ ( `' F " ran F ) |
| 33 | dfss2 | |- ( ( `' F " y ) C_ ( `' F " ran F ) <-> ( ( `' F " y ) i^i ( `' F " ran F ) ) = ( `' F " y ) ) |
|
| 34 | 32 33 | mpbi | |- ( ( `' F " y ) i^i ( `' F " ran F ) ) = ( `' F " y ) |
| 35 | 25 29 34 | 3eqtr3g | |- ( Fun F -> U_ x e. ( y i^i ran F ) ( `' F " { x } ) = ( `' F " y ) ) |
| 36 | 24 6 35 | 3syl | |- ( ( ph /\ -. 0 e. y ) -> U_ x e. ( y i^i ran F ) ( `' F " { x } ) = ( `' F " y ) ) |
| 37 | 2 | adantr | |- ( ( ph /\ -. 0 e. y ) -> ran F e. Fin ) |
| 38 | inss2 | |- ( y i^i ran F ) C_ ran F |
|
| 39 | ssfi | |- ( ( ran F e. Fin /\ ( y i^i ran F ) C_ ran F ) -> ( y i^i ran F ) e. Fin ) |
|
| 40 | 37 38 39 | sylancl | |- ( ( ph /\ -. 0 e. y ) -> ( y i^i ran F ) e. Fin ) |
| 41 | simpll | |- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ph ) |
|
| 42 | elinel1 | |- ( 0 e. ( y i^i ran F ) -> 0 e. y ) |
|
| 43 | 42 | con3i | |- ( -. 0 e. y -> -. 0 e. ( y i^i ran F ) ) |
| 44 | 43 | adantl | |- ( ( ph /\ -. 0 e. y ) -> -. 0 e. ( y i^i ran F ) ) |
| 45 | disjsn | |- ( ( ( y i^i ran F ) i^i { 0 } ) = (/) <-> -. 0 e. ( y i^i ran F ) ) |
|
| 46 | 44 45 | sylibr | |- ( ( ph /\ -. 0 e. y ) -> ( ( y i^i ran F ) i^i { 0 } ) = (/) ) |
| 47 | reldisj | |- ( ( y i^i ran F ) C_ ran F -> ( ( ( y i^i ran F ) i^i { 0 } ) = (/) <-> ( y i^i ran F ) C_ ( ran F \ { 0 } ) ) ) |
|
| 48 | 38 47 | ax-mp | |- ( ( ( y i^i ran F ) i^i { 0 } ) = (/) <-> ( y i^i ran F ) C_ ( ran F \ { 0 } ) ) |
| 49 | 46 48 | sylib | |- ( ( ph /\ -. 0 e. y ) -> ( y i^i ran F ) C_ ( ran F \ { 0 } ) ) |
| 50 | 49 | sselda | |- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> x e. ( ran F \ { 0 } ) ) |
| 51 | 41 50 3 | syl2anc | |- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( `' F " { x } ) e. dom vol ) |
| 52 | 51 | ralrimiva | |- ( ( ph /\ -. 0 e. y ) -> A. x e. ( y i^i ran F ) ( `' F " { x } ) e. dom vol ) |
| 53 | finiunmbl | |- ( ( ( y i^i ran F ) e. Fin /\ A. x e. ( y i^i ran F ) ( `' F " { x } ) e. dom vol ) -> U_ x e. ( y i^i ran F ) ( `' F " { x } ) e. dom vol ) |
|
| 54 | 40 52 53 | syl2anc | |- ( ( ph /\ -. 0 e. y ) -> U_ x e. ( y i^i ran F ) ( `' F " { x } ) e. dom vol ) |
| 55 | 36 54 | eqeltrrd | |- ( ( ph /\ -. 0 e. y ) -> ( `' F " y ) e. dom vol ) |
| 56 | 55 | ex | |- ( ph -> ( -. 0 e. y -> ( `' F " y ) e. dom vol ) ) |
| 57 | 56 | alrimiv | |- ( ph -> A. y ( -. 0 e. y -> ( `' F " y ) e. dom vol ) ) |
| 58 | 57 | ad2antrr | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> A. y ( -. 0 e. y -> ( `' F " y ) e. dom vol ) ) |
| 59 | elndif | |- ( 0 e. x -> -. 0 e. ( RR \ x ) ) |
|
| 60 | 59 | adantl | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> -. 0 e. ( RR \ x ) ) |
| 61 | reex | |- RR e. _V |
|
| 62 | 61 | difexi | |- ( RR \ x ) e. _V |
| 63 | eleq2 | |- ( y = ( RR \ x ) -> ( 0 e. y <-> 0 e. ( RR \ x ) ) ) |
|
| 64 | 63 | notbid | |- ( y = ( RR \ x ) -> ( -. 0 e. y <-> -. 0 e. ( RR \ x ) ) ) |
| 65 | imaeq2 | |- ( y = ( RR \ x ) -> ( `' F " y ) = ( `' F " ( RR \ x ) ) ) |
|
| 66 | 65 | eleq1d | |- ( y = ( RR \ x ) -> ( ( `' F " y ) e. dom vol <-> ( `' F " ( RR \ x ) ) e. dom vol ) ) |
| 67 | 64 66 | imbi12d | |- ( y = ( RR \ x ) -> ( ( -. 0 e. y -> ( `' F " y ) e. dom vol ) <-> ( -. 0 e. ( RR \ x ) -> ( `' F " ( RR \ x ) ) e. dom vol ) ) ) |
| 68 | 62 67 | spcv | |- ( A. y ( -. 0 e. y -> ( `' F " y ) e. dom vol ) -> ( -. 0 e. ( RR \ x ) -> ( `' F " ( RR \ x ) ) e. dom vol ) ) |
| 69 | 58 60 68 | sylc | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " ( RR \ x ) ) e. dom vol ) |
| 70 | difmbl | |- ( ( ( `' F " RR ) e. dom vol /\ ( `' F " ( RR \ x ) ) e. dom vol ) -> ( ( `' F " RR ) \ ( `' F " ( RR \ x ) ) ) e. dom vol ) |
|
| 71 | 23 69 70 | syl2anc | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( ( `' F " RR ) \ ( `' F " ( RR \ x ) ) ) e. dom vol ) |
| 72 | 19 71 | eqeltrrd | |- ( ( ( ph /\ x e. ran (,) ) /\ 0 e. x ) -> ( `' F " x ) e. dom vol ) |
| 73 | eleq2 | |- ( y = x -> ( 0 e. y <-> 0 e. x ) ) |
|
| 74 | 73 | notbid | |- ( y = x -> ( -. 0 e. y <-> -. 0 e. x ) ) |
| 75 | imaeq2 | |- ( y = x -> ( `' F " y ) = ( `' F " x ) ) |
|
| 76 | 75 | eleq1d | |- ( y = x -> ( ( `' F " y ) e. dom vol <-> ( `' F " x ) e. dom vol ) ) |
| 77 | 74 76 | imbi12d | |- ( y = x -> ( ( -. 0 e. y -> ( `' F " y ) e. dom vol ) <-> ( -. 0 e. x -> ( `' F " x ) e. dom vol ) ) ) |
| 78 | 77 | spvv | |- ( A. y ( -. 0 e. y -> ( `' F " y ) e. dom vol ) -> ( -. 0 e. x -> ( `' F " x ) e. dom vol ) ) |
| 79 | 57 78 | syl | |- ( ph -> ( -. 0 e. x -> ( `' F " x ) e. dom vol ) ) |
| 80 | 79 | imp | |- ( ( ph /\ -. 0 e. x ) -> ( `' F " x ) e. dom vol ) |
| 81 | 80 | adantlr | |- ( ( ( ph /\ x e. ran (,) ) /\ -. 0 e. x ) -> ( `' F " x ) e. dom vol ) |
| 82 | 72 81 | pm2.61dan | |- ( ( ph /\ x e. ran (,) ) -> ( `' F " x ) e. dom vol ) |
| 83 | 82 | ralrimiva | |- ( ph -> A. x e. ran (,) ( `' F " x ) e. dom vol ) |
| 84 | ismbf | |- ( F : RR --> RR -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
|
| 85 | 1 84 | syl | |- ( ph -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
| 86 | 83 85 | mpbird | |- ( ph -> F e. MblFn ) |
| 87 | mblvol | |- ( ( `' F " y ) e. dom vol -> ( vol ` ( `' F " y ) ) = ( vol* ` ( `' F " y ) ) ) |
|
| 88 | 55 87 | syl | |- ( ( ph /\ -. 0 e. y ) -> ( vol ` ( `' F " y ) ) = ( vol* ` ( `' F " y ) ) ) |
| 89 | mblss | |- ( ( `' F " y ) e. dom vol -> ( `' F " y ) C_ RR ) |
|
| 90 | 55 89 | syl | |- ( ( ph /\ -. 0 e. y ) -> ( `' F " y ) C_ RR ) |
| 91 | mblvol | |- ( ( `' F " { x } ) e. dom vol -> ( vol ` ( `' F " { x } ) ) = ( vol* ` ( `' F " { x } ) ) ) |
|
| 92 | 51 91 | syl | |- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( vol ` ( `' F " { x } ) ) = ( vol* ` ( `' F " { x } ) ) ) |
| 93 | 41 50 4 | syl2anc | |- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
| 94 | 92 93 | eqeltrrd | |- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( vol* ` ( `' F " { x } ) ) e. RR ) |
| 95 | 40 94 | fsumrecl | |- ( ( ph /\ -. 0 e. y ) -> sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) e. RR ) |
| 96 | 36 | fveq2d | |- ( ( ph /\ -. 0 e. y ) -> ( vol* ` U_ x e. ( y i^i ran F ) ( `' F " { x } ) ) = ( vol* ` ( `' F " y ) ) ) |
| 97 | mblss | |- ( ( `' F " { x } ) e. dom vol -> ( `' F " { x } ) C_ RR ) |
|
| 98 | 51 97 | syl | |- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( `' F " { x } ) C_ RR ) |
| 99 | 98 94 | jca | |- ( ( ( ph /\ -. 0 e. y ) /\ x e. ( y i^i ran F ) ) -> ( ( `' F " { x } ) C_ RR /\ ( vol* ` ( `' F " { x } ) ) e. RR ) ) |
| 100 | 99 | ralrimiva | |- ( ( ph /\ -. 0 e. y ) -> A. x e. ( y i^i ran F ) ( ( `' F " { x } ) C_ RR /\ ( vol* ` ( `' F " { x } ) ) e. RR ) ) |
| 101 | ovolfiniun | |- ( ( ( y i^i ran F ) e. Fin /\ A. x e. ( y i^i ran F ) ( ( `' F " { x } ) C_ RR /\ ( vol* ` ( `' F " { x } ) ) e. RR ) ) -> ( vol* ` U_ x e. ( y i^i ran F ) ( `' F " { x } ) ) <_ sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) ) |
|
| 102 | 40 100 101 | syl2anc | |- ( ( ph /\ -. 0 e. y ) -> ( vol* ` U_ x e. ( y i^i ran F ) ( `' F " { x } ) ) <_ sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) ) |
| 103 | 96 102 | eqbrtrrd | |- ( ( ph /\ -. 0 e. y ) -> ( vol* ` ( `' F " y ) ) <_ sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) ) |
| 104 | ovollecl | |- ( ( ( `' F " y ) C_ RR /\ sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) e. RR /\ ( vol* ` ( `' F " y ) ) <_ sum_ x e. ( y i^i ran F ) ( vol* ` ( `' F " { x } ) ) ) -> ( vol* ` ( `' F " y ) ) e. RR ) |
|
| 105 | 90 95 103 104 | syl3anc | |- ( ( ph /\ -. 0 e. y ) -> ( vol* ` ( `' F " y ) ) e. RR ) |
| 106 | 88 105 | eqeltrd | |- ( ( ph /\ -. 0 e. y ) -> ( vol ` ( `' F " y ) ) e. RR ) |
| 107 | 106 | ex | |- ( ph -> ( -. 0 e. y -> ( vol ` ( `' F " y ) ) e. RR ) ) |
| 108 | 107 | alrimiv | |- ( ph -> A. y ( -. 0 e. y -> ( vol ` ( `' F " y ) ) e. RR ) ) |
| 109 | neldifsn | |- -. 0 e. ( RR \ { 0 } ) |
|
| 110 | 61 | difexi | |- ( RR \ { 0 } ) e. _V |
| 111 | eleq2 | |- ( y = ( RR \ { 0 } ) -> ( 0 e. y <-> 0 e. ( RR \ { 0 } ) ) ) |
|
| 112 | 111 | notbid | |- ( y = ( RR \ { 0 } ) -> ( -. 0 e. y <-> -. 0 e. ( RR \ { 0 } ) ) ) |
| 113 | imaeq2 | |- ( y = ( RR \ { 0 } ) -> ( `' F " y ) = ( `' F " ( RR \ { 0 } ) ) ) |
|
| 114 | 113 | fveq2d | |- ( y = ( RR \ { 0 } ) -> ( vol ` ( `' F " y ) ) = ( vol ` ( `' F " ( RR \ { 0 } ) ) ) ) |
| 115 | 114 | eleq1d | |- ( y = ( RR \ { 0 } ) -> ( ( vol ` ( `' F " y ) ) e. RR <-> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) |
| 116 | 112 115 | imbi12d | |- ( y = ( RR \ { 0 } ) -> ( ( -. 0 e. y -> ( vol ` ( `' F " y ) ) e. RR ) <-> ( -. 0 e. ( RR \ { 0 } ) -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |
| 117 | 110 116 | spcv | |- ( A. y ( -. 0 e. y -> ( vol ` ( `' F " y ) ) e. RR ) -> ( -. 0 e. ( RR \ { 0 } ) -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) |
| 118 | 108 109 117 | mpisyl | |- ( ph -> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) |
| 119 | 1 2 118 | 3jca | |- ( ph -> ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) |
| 120 | isi1f | |- ( F e. dom S.1 <-> ( F e. MblFn /\ ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |
|
| 121 | 86 119 120 | sylanbrc | |- ( ph -> F e. dom S.1 ) |