This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemul1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A x. C ) <_ ( B x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( A x. C ) < ( B x. C ) ) ) |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | recn | |- ( B e. RR -> B e. CC ) |
|
| 4 | recn | |- ( C e. RR -> C e. CC ) |
|
| 5 | 4 | adantr | |- ( ( C e. RR /\ 0 < C ) -> C e. CC ) |
| 6 | gt0ne0 | |- ( ( C e. RR /\ 0 < C ) -> C =/= 0 ) |
|
| 7 | 5 6 | jca | |- ( ( C e. RR /\ 0 < C ) -> ( C e. CC /\ C =/= 0 ) ) |
| 8 | mulcan2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. C ) = ( B x. C ) <-> A = B ) ) |
|
| 9 | 2 3 7 8 | syl3an | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) = ( B x. C ) <-> A = B ) ) |
| 10 | 9 | bicomd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A = B <-> ( A x. C ) = ( B x. C ) ) ) |
| 11 | 1 10 | orbi12d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A < B \/ A = B ) <-> ( ( A x. C ) < ( B x. C ) \/ ( A x. C ) = ( B x. C ) ) ) ) |
| 12 | leloe | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
|
| 13 | 12 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
| 14 | remulcl | |- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
|
| 15 | 14 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
| 16 | remulcl | |- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
|
| 17 | 16 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
| 18 | 15 17 | leloed | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. C ) <_ ( B x. C ) <-> ( ( A x. C ) < ( B x. C ) \/ ( A x. C ) = ( B x. C ) ) ) ) |
| 19 | 18 | 3adant3r | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) <_ ( B x. C ) <-> ( ( A x. C ) < ( B x. C ) \/ ( A x. C ) = ( B x. C ) ) ) ) |
| 20 | 11 13 19 | 3bitr4d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A x. C ) <_ ( B x. C ) ) ) |