This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004) (Proof shortened by Fan Zheng, 14-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flge | |- ( ( A e. RR /\ B e. ZZ ) -> ( B <_ A <-> B <_ ( |_ ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flltp1 | |- ( A e. RR -> A < ( ( |_ ` A ) + 1 ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ B e. ZZ ) -> A < ( ( |_ ` A ) + 1 ) ) |
| 3 | simpr | |- ( ( A e. RR /\ B e. ZZ ) -> B e. ZZ ) |
|
| 4 | 3 | zred | |- ( ( A e. RR /\ B e. ZZ ) -> B e. RR ) |
| 5 | simpl | |- ( ( A e. RR /\ B e. ZZ ) -> A e. RR ) |
|
| 6 | 5 | flcld | |- ( ( A e. RR /\ B e. ZZ ) -> ( |_ ` A ) e. ZZ ) |
| 7 | 6 | peano2zd | |- ( ( A e. RR /\ B e. ZZ ) -> ( ( |_ ` A ) + 1 ) e. ZZ ) |
| 8 | 7 | zred | |- ( ( A e. RR /\ B e. ZZ ) -> ( ( |_ ` A ) + 1 ) e. RR ) |
| 9 | lelttr | |- ( ( B e. RR /\ A e. RR /\ ( ( |_ ` A ) + 1 ) e. RR ) -> ( ( B <_ A /\ A < ( ( |_ ` A ) + 1 ) ) -> B < ( ( |_ ` A ) + 1 ) ) ) |
|
| 10 | 4 5 8 9 | syl3anc | |- ( ( A e. RR /\ B e. ZZ ) -> ( ( B <_ A /\ A < ( ( |_ ` A ) + 1 ) ) -> B < ( ( |_ ` A ) + 1 ) ) ) |
| 11 | 2 10 | mpan2d | |- ( ( A e. RR /\ B e. ZZ ) -> ( B <_ A -> B < ( ( |_ ` A ) + 1 ) ) ) |
| 12 | zleltp1 | |- ( ( B e. ZZ /\ ( |_ ` A ) e. ZZ ) -> ( B <_ ( |_ ` A ) <-> B < ( ( |_ ` A ) + 1 ) ) ) |
|
| 13 | 3 6 12 | syl2anc | |- ( ( A e. RR /\ B e. ZZ ) -> ( B <_ ( |_ ` A ) <-> B < ( ( |_ ` A ) + 1 ) ) ) |
| 14 | 11 13 | sylibrd | |- ( ( A e. RR /\ B e. ZZ ) -> ( B <_ A -> B <_ ( |_ ` A ) ) ) |
| 15 | flle | |- ( A e. RR -> ( |_ ` A ) <_ A ) |
|
| 16 | 15 | adantr | |- ( ( A e. RR /\ B e. ZZ ) -> ( |_ ` A ) <_ A ) |
| 17 | 6 | zred | |- ( ( A e. RR /\ B e. ZZ ) -> ( |_ ` A ) e. RR ) |
| 18 | letr | |- ( ( B e. RR /\ ( |_ ` A ) e. RR /\ A e. RR ) -> ( ( B <_ ( |_ ` A ) /\ ( |_ ` A ) <_ A ) -> B <_ A ) ) |
|
| 19 | 4 17 5 18 | syl3anc | |- ( ( A e. RR /\ B e. ZZ ) -> ( ( B <_ ( |_ ` A ) /\ ( |_ ` A ) <_ A ) -> B <_ A ) ) |
| 20 | 16 19 | mpan2d | |- ( ( A e. RR /\ B e. ZZ ) -> ( B <_ ( |_ ` A ) -> B <_ A ) ) |
| 21 | 14 20 | impbid | |- ( ( A e. RR /\ B e. ZZ ) -> ( B <_ A <-> B <_ ( |_ ` A ) ) ) |