This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfi1fseq . (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| mbfi1fseq.3 | |- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
||
| mbfi1fseq.4 | |- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
||
| Assertion | mbfi1fseqlem2 | |- ( A e. NN -> ( G ` A ) = ( x e. RR |-> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 3 | mbfi1fseq.3 | |- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
|
| 4 | mbfi1fseq.4 | |- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
|
| 5 | negeq | |- ( m = A -> -u m = -u A ) |
|
| 6 | id | |- ( m = A -> m = A ) |
|
| 7 | 5 6 | oveq12d | |- ( m = A -> ( -u m [,] m ) = ( -u A [,] A ) ) |
| 8 | 7 | eleq2d | |- ( m = A -> ( x e. ( -u m [,] m ) <-> x e. ( -u A [,] A ) ) ) |
| 9 | oveq1 | |- ( m = A -> ( m J x ) = ( A J x ) ) |
|
| 10 | 9 6 | breq12d | |- ( m = A -> ( ( m J x ) <_ m <-> ( A J x ) <_ A ) ) |
| 11 | 10 9 6 | ifbieq12d | |- ( m = A -> if ( ( m J x ) <_ m , ( m J x ) , m ) = if ( ( A J x ) <_ A , ( A J x ) , A ) ) |
| 12 | 8 11 | ifbieq1d | |- ( m = A -> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) = if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) ) |
| 13 | 12 | mpteq2dv | |- ( m = A -> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) = ( x e. RR |-> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) ) ) |
| 14 | reex | |- RR e. _V |
|
| 15 | 14 | mptex | |- ( x e. RR |-> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) ) e. _V |
| 16 | 13 4 15 | fvmpt | |- ( A e. NN -> ( G ` A ) = ( x e. RR |-> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) ) ) |