This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A difference of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difmbl | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A \ B ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif2 | |- ( A i^i ( RR \ B ) ) = ( ( A i^i RR ) \ B ) |
|
| 2 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 3 | dfss2 | |- ( A C_ RR <-> ( A i^i RR ) = A ) |
|
| 4 | 2 3 | sylib | |- ( A e. dom vol -> ( A i^i RR ) = A ) |
| 5 | 4 | difeq1d | |- ( A e. dom vol -> ( ( A i^i RR ) \ B ) = ( A \ B ) ) |
| 6 | 1 5 | eqtrid | |- ( A e. dom vol -> ( A i^i ( RR \ B ) ) = ( A \ B ) ) |
| 7 | 6 | adantr | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i ( RR \ B ) ) = ( A \ B ) ) |
| 8 | cmmbl | |- ( B e. dom vol -> ( RR \ B ) e. dom vol ) |
|
| 9 | inmbl | |- ( ( A e. dom vol /\ ( RR \ B ) e. dom vol ) -> ( A i^i ( RR \ B ) ) e. dom vol ) |
|
| 10 | 8 9 | sylan2 | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i ( RR \ B ) ) e. dom vol ) |
| 11 | 7 10 | eqeltrrd | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A \ B ) e. dom vol ) |