This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997) Remove dependency on ax-mulcom and ax-mulass . (Revised by Steven Nguyen, 24-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmulcl | |- ( ( A e. NN /\ B e. NN ) -> ( A x. B ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = 1 -> ( A x. x ) = ( A x. 1 ) ) |
|
| 2 | 1 | eleq1d | |- ( x = 1 -> ( ( A x. x ) e. NN <-> ( A x. 1 ) e. NN ) ) |
| 3 | 2 | imbi2d | |- ( x = 1 -> ( ( A e. NN -> ( A x. x ) e. NN ) <-> ( A e. NN -> ( A x. 1 ) e. NN ) ) ) |
| 4 | oveq2 | |- ( x = y -> ( A x. x ) = ( A x. y ) ) |
|
| 5 | 4 | eleq1d | |- ( x = y -> ( ( A x. x ) e. NN <-> ( A x. y ) e. NN ) ) |
| 6 | 5 | imbi2d | |- ( x = y -> ( ( A e. NN -> ( A x. x ) e. NN ) <-> ( A e. NN -> ( A x. y ) e. NN ) ) ) |
| 7 | oveq2 | |- ( x = ( y + 1 ) -> ( A x. x ) = ( A x. ( y + 1 ) ) ) |
|
| 8 | 7 | eleq1d | |- ( x = ( y + 1 ) -> ( ( A x. x ) e. NN <-> ( A x. ( y + 1 ) ) e. NN ) ) |
| 9 | 8 | imbi2d | |- ( x = ( y + 1 ) -> ( ( A e. NN -> ( A x. x ) e. NN ) <-> ( A e. NN -> ( A x. ( y + 1 ) ) e. NN ) ) ) |
| 10 | oveq2 | |- ( x = B -> ( A x. x ) = ( A x. B ) ) |
|
| 11 | 10 | eleq1d | |- ( x = B -> ( ( A x. x ) e. NN <-> ( A x. B ) e. NN ) ) |
| 12 | 11 | imbi2d | |- ( x = B -> ( ( A e. NN -> ( A x. x ) e. NN ) <-> ( A e. NN -> ( A x. B ) e. NN ) ) ) |
| 13 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 14 | ax-1rid | |- ( A e. RR -> ( A x. 1 ) = A ) |
|
| 15 | 14 | eleq1d | |- ( A e. RR -> ( ( A x. 1 ) e. NN <-> A e. NN ) ) |
| 16 | 15 | biimprd | |- ( A e. RR -> ( A e. NN -> ( A x. 1 ) e. NN ) ) |
| 17 | 13 16 | mpcom | |- ( A e. NN -> ( A x. 1 ) e. NN ) |
| 18 | nnaddcl | |- ( ( ( A x. y ) e. NN /\ A e. NN ) -> ( ( A x. y ) + A ) e. NN ) |
|
| 19 | 18 | ancoms | |- ( ( A e. NN /\ ( A x. y ) e. NN ) -> ( ( A x. y ) + A ) e. NN ) |
| 20 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 21 | nncn | |- ( y e. NN -> y e. CC ) |
|
| 22 | ax-1cn | |- 1 e. CC |
|
| 23 | adddi | |- ( ( A e. CC /\ y e. CC /\ 1 e. CC ) -> ( A x. ( y + 1 ) ) = ( ( A x. y ) + ( A x. 1 ) ) ) |
|
| 24 | 22 23 | mp3an3 | |- ( ( A e. CC /\ y e. CC ) -> ( A x. ( y + 1 ) ) = ( ( A x. y ) + ( A x. 1 ) ) ) |
| 25 | 20 21 24 | syl2an | |- ( ( A e. NN /\ y e. NN ) -> ( A x. ( y + 1 ) ) = ( ( A x. y ) + ( A x. 1 ) ) ) |
| 26 | 13 14 | syl | |- ( A e. NN -> ( A x. 1 ) = A ) |
| 27 | 26 | adantr | |- ( ( A e. NN /\ y e. NN ) -> ( A x. 1 ) = A ) |
| 28 | 27 | oveq2d | |- ( ( A e. NN /\ y e. NN ) -> ( ( A x. y ) + ( A x. 1 ) ) = ( ( A x. y ) + A ) ) |
| 29 | 25 28 | eqtrd | |- ( ( A e. NN /\ y e. NN ) -> ( A x. ( y + 1 ) ) = ( ( A x. y ) + A ) ) |
| 30 | 29 | eleq1d | |- ( ( A e. NN /\ y e. NN ) -> ( ( A x. ( y + 1 ) ) e. NN <-> ( ( A x. y ) + A ) e. NN ) ) |
| 31 | 19 30 | imbitrrid | |- ( ( A e. NN /\ y e. NN ) -> ( ( A e. NN /\ ( A x. y ) e. NN ) -> ( A x. ( y + 1 ) ) e. NN ) ) |
| 32 | 31 | exp4b | |- ( A e. NN -> ( y e. NN -> ( A e. NN -> ( ( A x. y ) e. NN -> ( A x. ( y + 1 ) ) e. NN ) ) ) ) |
| 33 | 32 | pm2.43b | |- ( y e. NN -> ( A e. NN -> ( ( A x. y ) e. NN -> ( A x. ( y + 1 ) ) e. NN ) ) ) |
| 34 | 33 | a2d | |- ( y e. NN -> ( ( A e. NN -> ( A x. y ) e. NN ) -> ( A e. NN -> ( A x. ( y + 1 ) ) e. NN ) ) ) |
| 35 | 3 6 9 12 17 34 | nnind | |- ( B e. NN -> ( A e. NN -> ( A x. B ) e. NN ) ) |
| 36 | 35 | impcom | |- ( ( A e. NN /\ B e. NN ) -> ( A x. B ) e. NN ) |