This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemuldiv | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) <_ B <-> A <_ ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltdivmul2 | |- ( ( B e. RR /\ A e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( B / C ) < A <-> B < ( A x. C ) ) ) |
|
| 2 | 1 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( B / C ) < A <-> B < ( A x. C ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( -. ( B / C ) < A <-> -. B < ( A x. C ) ) ) |
| 4 | simp1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> A e. RR ) |
|
| 5 | gt0ne0 | |- ( ( C e. RR /\ 0 < C ) -> C =/= 0 ) |
|
| 6 | 5 | 3adant1 | |- ( ( B e. RR /\ C e. RR /\ 0 < C ) -> C =/= 0 ) |
| 7 | redivcl | |- ( ( B e. RR /\ C e. RR /\ C =/= 0 ) -> ( B / C ) e. RR ) |
|
| 8 | 6 7 | syld3an3 | |- ( ( B e. RR /\ C e. RR /\ 0 < C ) -> ( B / C ) e. RR ) |
| 9 | 8 | 3expb | |- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B / C ) e. RR ) |
| 10 | 9 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B / C ) e. RR ) |
| 11 | 4 10 | lenltd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ ( B / C ) <-> -. ( B / C ) < A ) ) |
| 12 | remulcl | |- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
|
| 13 | 12 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
| 14 | simp2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
|
| 15 | 13 14 | lenltd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. C ) <_ B <-> -. B < ( A x. C ) ) ) |
| 16 | 15 | 3adant3r | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) <_ B <-> -. B < ( A x. C ) ) ) |
| 17 | 3 11 16 | 3bitr4rd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) <_ B <-> A <_ ( B / C ) ) ) |